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ABSTRACT 

Broadband microstrip filter operating within 1.5GHz bandwidth at UHF range for RF communication systems has 

been designed, simulated, and implemented using a practical network parameter method. The design has been 

performed using the network parameter method with ABCD parameters, which simplified the analysis significantly. 

The analytical,  simulated and measured results have been compared  and excellent agreement is observed. It has 

been shown that the network parameter method such as the one presented in this paper can be used to design and 

implement broadband microstrip filters with high accuracy.   
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1.    INTRODUCTION 

RF and microwave circuit designers have been using CAD tools to design better performing circuits and integrated 

systems. Electronic design automation (EDA) and electromagnetic (EM) analysis software are some of tools that are 

commonly used to design and optimize RF sub-component and systems.  

 

Modern RF and microwave communication systems, specifically mobile and satellite communications require high-

performance narrow-band filters with low insertion loss and high selectivity together with linear phase. In wireless 

systems, indispensable requirements are the realization of robust filters for frequency selection circuits in power 

amplifiers, mixers, and low noise amplifiers. Filters have important implications for impedance matching and 

frequency selectivity, which greatly impact RF receiver performance such as noise, power consumption, and gain 

[1-2]. As technology matures, new filter designs are developed and more robust filter models are used for the 

analysis and design of microstrip filters [3-4] to meet these requirements. 

 

In this paper, a practical analytical method using ABCD network parameters to design a broadband microstrip filter 

is presented. Microstrip filter is designed using 5
th

 order Chebyshev filter topology to meet with the specifications, 

and simulated with planar electromagnetic simulator, Sonnet V12.56. Comparison between analytical, simulated, 

and measured results has been made and agreement is observed on all the values. 

 

2.    DESIGN TECHNIQUES 

The design specifications for a microstrip low pass filter (LPF) on Alumina substrate is given in [5] and illustrated in 

Table I. In the following sub-section, practical analytical method will be presented using ABCD network 

parameters. 

 
TABLE I.  DESIGN SPECIFICATIONS  

2.1 ABCD  Network Parameters in Filter Design 

In general, RF/Microwave filters and filter components can be represented using a two-port network shown in Fig. 

1. Two-port network is described by a set of four independent parameters, which can be related to voltage and 

current at any ports of the network. As a result two-port network can be treated as a black box modeled by the 

relationships between the four variables. There exist six different ways to describe the relationships between these  

 

Frequency 

(GHz) 
Design Criteria 

0.5-2 S21>-3dB 

3 S21=-20dB 

3.1-3.5 S21>-20dB 
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   Fig. 1 Two-port network representation 

 

variables, depending on which two of the four variables are given, while the other two can always be derived. All 

voltages and currents are complex variables and represented by phasors containing both magnitude and phase. 

 

Two-port networks are characterized by using two port network parameters such as Z-impedance, Y-admittance, h-

hybrid, and ABCD. They are usually expressed in matrix notation and they establish relations between the following 

parameters: Input voltage V1, output voltage V2, input current I1, and output current I2. ABCD parameters are 

preferred over others when the network contains cascaded elements as shown in Fig. 2. When this condition exists, 

the overall ABCD parameter of the network is found by simply multiplication of individual ABCD parameter of 

each cascaded component. ABCD parameter of individual network in Fig. 2 can be found by using the relation given 

in (1).  
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The overall ABCD parameters for the cascaded network is then found using 
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Figure 1.  Cascaded network representation with ABCD parameters. 

Conventional filter design begins with identification of the low pass prototype circuit according to the specifications 

in the passband and stopband. The low pass prototype circuit is obtained and illustrated in Fig. 3 based on the filter 

specifications given in Table I using 5
th

 order, 0.2dB ripple, Chebyshev filter topology to provide the attenuation 

needed within the specified frequency range.  

 
Figure 2.  Low pass prototype for 5th order, 0.2dB ripple, Chebyshev filter. 
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TABLE II.  LOW PASS PROTOTYPE VALUES 

 

 

 

 

 

 

Lumped element based filter can be converted to microstrip type filter by using distributed elements. Distributed 

element values can be obtained from the lumped element values using different methods. It is a common method to 

apply Richard’s transformation with the application of Kuroda’s identities as described in [6] to convert lumped 

element values to distributed element values. Conversion formulas are also available to obtain distributed values for 

thick film microstrip filter applications for specific substrates. The distributed element values for the filter presented 

in this paper are found for Alumina substrate using Akello’s relations [7] as follows 

 110020],/[03.00
31082.7 ZifmmnHxZxL 

6/5.0],/[08.0/109.88 3   hwformmpFhwxxC 

After the application of the conversion relations in (3) and (4), the width and the length of each stub of the filter is 

obtained and given in Table III. 
TABLE III.  DISTRIBUTED ELEMENT VALUES 

 

The layout of the filter, which is constructed using the calculated width, and the length of the stubs, are shown in 

Fig. 4. In this layout, there are five cascaded filter components.   

Figure 3.  Layout of the filter 

Filter response is obtained with the knowledge of insertion and return losses because insertion loss illustrates the 

passband characteristics whereas return loss shows the stopband characteristics of the filter. The proposed design 

method obtains insertion and return losses of the filter using the ABCD parameters of overall network. This is 

accomplished by calculating ABCD parameter of each component using (1) and then obtaining ABCD parameters of 

overall network with the application of equation (2). The ABCD network parameters for each stub is found as  
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where β is the phase constant,   is the length of section, Zo is the characteristic impedance. The phase constant is 

computed as  

pvf /2   

f is the frequency of the signal and vp is the phase velocity. The phase velocity can be computed using  

eff

p

x
v



81098.2
  

where eff  is the effective permittivity and is computed using relations which depend on the width (W) to board 

thickness (d) ratio 

Lumped Element Value 

C1 1.339 pF 

L1 1.337 nH 

C2 2.166 pF 

L2 1.337 nH 

C3 1.339 pF 

Element Width Length 

C1 2.90mm 4.9mm 

L2 0.20mm 8.8mm 

C3 2.9mm 7.4mm 

L4 0.20mm 8.8mm 

C5 2.90mm 4.9mm 
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r is the relative permittivity of the board material and assumed to be equal to 9. Conductor, which is used as trace 

in the filter, is assumed to have a zero thickness in our calculation. This will cause negligible error depending on the 

operational frequency. Any realizable conductor will have a finite thickness (t) causing fringing. The effect of non-

zero conductor thickness can be approximated as an increase in the effective width (W) of the conductor as follows 











t
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where x can take on two different values : 

dx  for     W>d/(2π)>2t 

or  

Wx 2      for    h/(2π)>W>2t   (12) 

Characteristic impedance is found using  
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 for  W/d > 1 

Characteristic impedance defined for each stub is based on trace length, width, and dielectric thickness. The 

insertion and return losses are analytically found utilizing the relation between ABCD and S-parameters of the 

network with the following relations.   
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MATLAB is used to compute the insertion and return losses and obtain filter response using the formulations given 

(1)-(18).  The calculated insertion and return losses for the filter shown in Fig. 4 using the proposed network method 

are plotted and illustrated in Fig. 5.  
Figure 4.  Frequency response of 5th order chebyshev filter with ABCD parameters 
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To determine how well the analysis agrees with the specifications in Table I, areas of interest are zoomed in and 

shown in Fig. (6-7) below. Fig. 6 shows the response at 2 GHz whereas Fig. 7 shows the response between 3.1–3.5 

GHz. 

Figure 5.  Frequency response at 2 GHz 

 
Figure 6.  Frequency response between between 3.1 – 3.5 GHz 

 

It is shown that analytical results meet with the desired filter specifications. Hence, filter now can be simulated with 

the planar electromagnetic simulator Sonnet for verification of the results, which are obtained using the proposed 

method. 

2.2 Simulation of Microstrip Filter 

The filter is simulated using Sonnet EM (Electro magnetic) simulator and the results are compared with the 

analytical results obtained in Section 2.1.  The cell size was set to 0.05 mm spacing to optimize the processing time 

and obtain accurate results with Sonnet V12.56. The simulation results, which are shown in Fig. 8 match closely 

with the results obtained using ABCD network parameters as illustrated in Figures 5-8. The analytical and 

simulation results obtained in this paper also check with the results presented in [5]. 
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Fig. 8 Frequency response of 5
th

 order chebyshev filter with Sonnet 

 

3.    CONCLUSION 

In this paper, a practical analytical method to design broadband microstrip filters at the UHF range for RF 

communication systems is presented. The method is based on the network parameter technique using ABCD 

parameters. The method significantly facilitates the design process and gives accurate results. Microstrip filter 

operating within 1.5GHz bandwidth using 5
th

 order Chebyshev filter topology is designed with the proposed method 

and simulated using the planar electromagnetic simulator, Sonnet and then implemented. It has been shown that the 

analytical and simulation results agree in all the frequency regions of interest. The method presented in this paper 

can be used to design low cost, broadband microstrip filters with high accuracy. 
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