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ABSTRACT 

In this work, the direct position kinematics of a 3 degree-of-freedom parallel manipulator with three identical limbs, 

type revolute-prismatic-spherical (RPS), is analyzed. In contrast to the previous studies on this class of 

manipulators, the revolute joints of the proposed manipulator are actuated rather than the prismatic joints. Direct 

position kinematics of the manipulator leads to a system of three nonlinear equations in three unknowns that are 

reduced to a univariate polynomial of degree eight and two quadratic equations in sequence using Sylvester dialytic 

elimination method. In addition, to show the efficiency of the presented method a numerical example is provided. 

 

Keywords: Parallel Manipulators; Direct Kinematics; Sylvester Dialytic Elimination Method; Analytical Solution. 

 
1. INTRODUCTION 

Parallel manipulators are the mechanisms composed of a moving platform connected to a fixed base by at least two 

kinematic chains (legs). The most studied type of parallel manipulator is without doubt the so-called general Gough–

Stewart platform, a fully parallel manipulator introduced by Gough as a universal tire-testing machine almost five 

decades ago [1,2] and proposed as a flight simulator by Stewart in 1965 [3]. 

However, in many industrial applications, such as some assembly operations, parallel manipulators with fewer 

degrees of freedom than six can be successfully used instead of the general Gough–Stewart platform. The Delta 

robot, invented by Clavel, is a typical example of such applications. With this in mind, a significant amount of 

research has been devoted to the study of parallel manipulators with fewer than six degrees of freedom; see for 

instance [4–9]. In fact, this class of parallel manipulators offers significant advantages such as the simpler 

mechanical assembly, a larger workspace than a general Gough–Stewart platform and a simpler direct position 

kinematics.  

Direct position kinematics of parallel manipulators lead to systems of nonlinear equations which are very difficult to 

solve. Solution approaches for such equations can be divided into two classes: numerical (iterative) methods and 

analytic methods. 

There are different numerical methods that can deal with simultaneous non-linear equations such as Newton or 

conjugate gradient method commonly used as iterative methods [10], Homotopy continuation method as an 

improved iterative method [11], and other new numerical methods [12,13]. 

On the other hand, there are some analytical methods that have effectively used to solve the systems of nonlinear 

equations. Two well known analytical techniques which are used for solving polynomial systems are Bezout’s 

elimination method and Sylvester’s dialytic elimination method. In these methods a set of polynomials of multiple 

variables are reduced into a polynomial of only one variable. Many scholars have used these methods for solving 

direct position kinematics of parallel manipulators, e.g. [14-16].  

The 3-RPS parallel manipulators constitute a class of parallel manipulators with fewer degrees of freedom than six. 

A 3-RPS parallel manipulator, see Fig. 1, is a mechanism where the moving platform is connected to the fixed 

platform by means of three limbs. Each limb is composed by a lower body and an upper body connected to each 

other by means of a prismatic joint. The moving platform is connected at the upper bodies via three distinct 

spherical joints while the lower bodies are connected to the fixed platform by means of three distinct revolute joints. 

The 3-RPS parallel manipulator, in which the prismatic joints are actuated, was introduced by Hunt [17] and has 

been the motive of an exhaustive research field where a great number of contributions, encompassing a wide range 

of topics, such as kinematic and dynamic analyses, synthesis, singularity analysis, extensions to hyper-redundant 

manipulators, etc., see for instance [18–21]. 

But, by actuating the revolute joints, a new 3-RPS parallel manipulator is achieved while R denotes the actuated 

revolute joint. To the best knowledge of the author, no study has been done for this type of 3-RPS manipulators. 

This paper analyzes the direct position kinematics of such a manipulator in an analytical form using the Sylvester 

dialytic elimination method. 
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2.    DIRECT POSITION KINEMATICS 

Direct position kinematics of the 3-RPS parallel manipulator consists of finding the pose (position and orientation) 

of the moving platform with respect to the fixed base while the rotation angle of the revolute actuators i (i=1, 2, 3) 

is given. Clearly this problem is equivalent to the computation of coordinates of the centers of the spherical joints Bi 

(i=1, 2, 3), attached at the moving platform, see Fig. 2. 
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Figure 1. The 3-RPS parallel manipulator. 
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Figure 2. Geometric parameters of the 3-RPS parallel manipulator. 

With regard to Fig. 2, the reference coordinate frame O{x, y, z} is attached to the fixed base while the z-axis is 

perpendicular to the plane passing through Ai (i=1, 2, 3). Coordinate of the points Ai (i=1, 2, 3) can be written as  

),,( iiii wvuA   (1) 

where ui, vi and wi are the known values. The smallest angle between positive side of the z-axis and the line passing 

through the ith leg is denoted by i (i=1, 2, 3). Also i (i=1, 2, 3) is the angle from positive side of the x-axis to the 

line segment 
iiCB  where Ci is the projection of the point Bi on O-xy plane. 

Considering legs of the manipulator as three 3D lines, the parametric equations of the lines can be expressed as  
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In which 
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and s, t and p are three independent variables. 

Geometric constraints due to the manipulator architecture can be expressed as follows 
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where 
jiij BBd   (i=1, 2, 3). Introducing Eqs. (2) into Eqs. (3) leads to 
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And 
i  (i=1,…, 18) are the coefficients depending on the geometric parameters of manipulator, see appendix A. 

Equations (4a) and (4b) are two quadratic equations in s. The parameters s can be eliminated from these two 

equations by Sylvester dialytic elimination method. Taking (4a)×n2(4b)×m2 and (4a)×n0(4b)×m0 respectively and 

rewriting the resultant equations in matrix form, we have  
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Equation (5) is valid if and only if det(K1)=0. Thus  
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020210101212  nmmnnmmnnmmn  (6) 
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Substitution of the parameters mi and ni (i=0, 1, 2) into Eq. (6) yields a fourth-degree polynomial in p as  
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Coefficients Di (i=1,…, 15) are presented in appendix B. Equations (4c) and (7) constitutes a system of two 

nonlinear equations in unknown p. once again the parameter p can be eliminated from these two equations using 

Sylvester dialytic elimination method. The term p
4
 can be eliminated multiplying Eq. (4c) by 2

4 pN  and Eq. (7) by 

2M . Subtraction of the obtained expressions results in  
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In addition, multiplying Eq. (4c) and (7) by p results in  
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Equations (4c) and (8)(10) can br written in a matrix form as  
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Again Eq. (11) is valid if and only if det(K2)=0. Equating determinant of K2 to zero leads to a polynomial of degree 

eight as follows 
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where Gi depends on kinematic parameters of the manipulator. The detailed expressions for Gi are not given here, 

because they are too large to serve any useful purpose. Equation (12) admits eight real solutions for t. For each 

acceptable value of t, Eqs. (4a) and (4c) yield at most two solutions for s and p respectively. Finally introducing the 

above values of t, p and s into the Eqs. (2) leads to the coordinates of points Bi (i=1, 2, 3). What is important to point 

it out that only the coordinates of points Bi (i=1, 2, 3) are admissible for which Eqs. (3) are satisfied.  

The above discussion shows that the 3-RPS parallel manipulator can have at most 32 solutions for the direct position 

kinematics.  

 

3.    CASE STUDY 

In this section, to show the efficiency of the proposed method, direct position kinematics of the 3-RPS parallel 

manipulator is solved with the followings values: A1=(0, 0, 0), A2=(25, 0, 0), A3=(12.5, 21.65, 0), dij=20 (i, j=1, 2, 3), 

i=25 (i=1, 2, 3), 1=30, 2=150, 1=270 in which the units of distance and angle are centimeter and degree 

respectively.  
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After calculating the parameters 
i  (i=1,…, 18) and Di (i=1,…, 15), and introducing them into Eq. (12), the values 

of coefficients Gi are obtained which are presented in Table 1. 

Now solving Eq. (12) yields eight solutions for t. For each t, the parameters p and s, and Consequently coordinates 

of the points Bi (i=1, 2, 3) are computed. Taking into account Eqs. (3), seven real and acceptable solutions are found 

which are presented in Table 2. In addition, graphical representations of the solutions are presented in Fig. 3. 

 

Table 1 Coefficients Gi (i = 0,…, 8) obtained for the case study 
 

Coefficient value Coefficient value 

G8 0.5005142605 G3 484102080.4 

G7 136.7514833 G2 4496468839 

G6 15145.09364 G1 0.2071508511×10
11

 

G5 870363.4849 G0 0.3726148668×10
11

 

G4 27663495.04   

 

 

Table 2 Seven solutions for direct position kinematics of the 3-RPS parallel manipulator. 
 

No. B1 B2 B3 

1 (7.84862080, 4.53140333, 19.4352516) (22.5038776, 1.44113689, 6.18105607) (12.5, 18.7593964, 6.19891942) 

2 (2.50388742, 1.44562007, 6.20028452) (22.5038776, 1.44113689, 6.18105607) (12.5, 12.5867836, 19.4361302) 

3 (2.49981681, 1.44326991, 6.19020462) (17.1422655, 4.53666508, 19.4578193) (12.5, 18.7636718, 6.18975061) 

4 (22.4494745, 12.9612101, 55.5908098) (2.45107331, 13.0186288, 55.8370795) (12.5, -4.2717652, 55.5894048) 

5 (22.4998143, 12.9902738, 55.7154645) (7.85864319, 9.89656696, 42.4465126) (12.5, -4.3303361, 55.7150105) 

6 (22.4494745, 12.9612101, 55.5908098) (2.45107331, 13.0186288, 55.8370795) (12.5, 1.7148480, 42.7510713) 

7 (17.2639771, 9.96736183, 42.7501528) (2.45107331, 13.0186288, 55.8370795) (12.5, -4.2717652, 55.5894048) 
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Figure 3. Schematic models of the solutions obtained for direct position kinematics of the 3-RPS manipulator. 

4.    CONCLUSION 
 

In this paper, the direct position kinematics problem of the 3-RPS parallel manipulator was solved. Representing the 

legs of the manipulator through three parametric equations, a system of three nonlinear equations in three unknowns 

was obtained. The system of equations was reduced to a univariate polynomial of degree eight and two quadratic 

equations in sequence, recursively using the Sylvester dialytic elimination method. At the end, a numerical example 

was provided and seven solutions were gained for the direct position kinematics of manipulator. 

 

APPENDIX A 

Coefficients i (i=1,..., 18) 
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APPENDIX B 

Coefficients Di (i=1,..., 15) 
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