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ABSTRACT 

This paper presents an analytical solution for the Graetz problem extended to slip flow that includes rarefaction 

effect. The hydrodynamically developed flow is assumed to enter a circular microchannel with uniform wall 

temperature. The effect of velocity slip, temperature jump and viscous dissipation term are all considered. The effect 

of nondimensional parameters (Knudsen number, Prandtl number, Brinkman number) on local and fully developed 

Nusselt number is investigated. The results show that under certain conditions the viscous dissipation effect on heat 

transfer in microchannels is significant and should not be neglected.   
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1. INTRODUCTION 

In recent decades, progress in micro fabrication technology has lead to development in a variety of micro scale 

fluidic systems. Micro devices are generally referred to devices having a characteristic length scale between 1 mm 

and 1 𝜇m such as microchannel heat exchangers, micropumps, micro actuators, etc. The extensive engineering 

applications of microdevices have provoked researchers to study on its fluid flow and heat transfer characteristics. 

Modeling heat and fluid flow through such small devices is different from the macro scales counterparts. As the 

ratio of the mean free path to characteristic length (Knudson number, 𝐾𝑛 =
𝜆

𝐿
 ) increases, the continuum assumption 

becomes no longer valid [1,2]. For the rarefaction varying between 0.001 and 0.1 the regime is called slip-flow 

regime [3]. Under such circumstances the continuum modeling along with the velocity slip and temperature jump 

boundary conditions on the wall need to be considered. 

The hydrodynamically developed and thermally developing laminar flow entering a circular tube with constant wall 

temperature known as Graetz problem was analytically solved by Graetz [4,5]. Many researchers developed the 

problem by considering different boundary conditions and different cross sections or by including the axial 

conduction and viscous dissipation. By increasing the applications of microchannels, their dominating boundary 

conditions were applied to solve Graetz problem. Barron et al. [6] extended the problem by including the effect of 

slip velocity. Ameel et al. [7] presented an analytical solution with constant wall heat flux in circular microchannel. 

Tunc and Bayazitoglu [8] solved the problem by considering slip velocity, temperature jump and viscous dissipation 

effect with uniform wall temperature and uniform heat flux boundary conditions. Jeong and Jeong [9] solved the 

energy equation with viscous dissipation and axial conduction terms in parallel plates considering both uniform 

temperature and uniform heat flux boundary conditions. Cetin et al. [10] presented a numerical solution by 

considering viscous dissipation and axial conduction with constant wall temperature in microchannel with circular 

cross section. Discrepancies in the fully developed Nusselt numbers can be seen in the results of Tunc and 

Bayazitoglu [8] (analytical solution) and Cetin et al. [10] (numerical solution). Cetin et al. [11] also solved the 

Graetz problem analytically with constant wall heat flux in microtubes including the effect of viscous dissipation 

and axial conduction. 

This paper extends the Graetz problem to include the rarefaction effect and viscous dissipation term in the fluid with 

constant wall temperature boundary condition. The energy equation is analytically solved by the method of 

separation of variables. By defining appropriate nondimensional variables the energy equation becomes a well-

known differential equation which is known as Kummer. The influence of viscous dissipation on Nusselt number in 

both cases where the fluid is being cooled or heated is thoroughly discussed. 

 
Nomenclature 𝑁𝑢 Nusselt number 

  𝐷 channel diameter 

𝑇 temperature    

𝑟0 channel radius  Greek symbols  

𝑟 radius 𝜇 dynamic viscosity 

𝑟∗ dimensionless radius, (𝑟/𝑅) 𝛾 ratio of specific heats, (𝑐𝑝/𝑐𝑣) 



IJRRAS 6 (2) ● February 2011 Vandadi & al. ● Slip-Flow Heat Transfer in Circular Microchannel 

  

177 
 

𝐹𝑡  thermal accommodation coefficient 𝛼 thermal diffusivity, (𝑘/𝜌𝑐𝑝) 

𝑃𝑟 Prandtl number, (𝜈/𝛼) 𝜆 mean free path ; eigenvalue 

𝑥 distance along tube 𝜃 dimensionless temperature, (𝑇 − 𝑇𝑤)/(𝑇0 − 𝑇𝑤) 

𝑥∗ dimensionless distance along tube, (𝑥/𝐿)   

𝑢∗ dimensionless velocity, (𝑢/𝑢𝑚 ) Subscript  

𝑢 velocity in x direction 𝑠 slip flow 

𝑘 thermal conductivity 𝑤 wall 

ℎ𝑥  local heat transfer coefficient 0 at 𝑥 = 0 

𝑁𝑢𝑥  local Nusselt number 𝐵 bulk 

𝐾𝑛 Knudsen number 𝑚 mean 

𝑅𝑒 Reynolds number ∞ infinity 

𝐵𝑟 Brinkman number 𝑑 Developing 

 

2.    ANALYSIS 

The steady state hydrodynamically developed flow with inlet temperature T0 enters into a microtube with radius r0 

and wall temperature 𝑇𝑤 . The dominating energy equation may be written as: 

𝑢
𝛼 
𝜕𝑇

𝜕𝑥
=

𝜕2𝑇

𝜕𝑟2
+ 1

𝑟 
𝜕𝑇

𝜕𝑟
+

𝜇

𝑘
(
𝜕𝑢

𝜕𝑟
)2                                                                                                                   (1) 

Boundary conditions are: 
𝜕𝑇

𝜕𝑟
= 0       𝑎𝑡         𝑟 = 0                                                                                                                                    (2𝑎) 

𝑇 = 𝑇0      𝑎𝑡        𝑥 = 0                                                                                                                                        (2𝑏) 

𝑇𝑠 − 𝑇𝑤 =
𝐹𝑡 − 2

𝐹𝑡

𝜆

𝑃𝑟

2𝛾

1 + 𝛾

𝜕𝑇

𝜕𝑟
|𝑟=𝑟0

                                                                                                                (2𝑐) 

where 𝑇𝑠 is the temperature of the fluid at the wall, 𝑇𝑤  the wall temperature, 𝐹𝑡  is the thermal accommodation 

coefficient and 𝛾 is the specific heat ratio. The fully developed velocity profile can be derived from momentum 

equation by applying slip velocity boundary condition: 

𝑢 = 2𝑢𝑚

 1 −
𝑟2

𝑟0
2 + 4𝐾𝑛 

 1 + 8𝐾𝑛 
                                                                                                                                 (3) 

Appropriate non-dimensional variables may be defined as: 

𝑟∗ =
𝑟

𝑟°𝐵
                𝑥∗ =

𝑥
𝑟°𝐵

3 

𝑅𝑒 𝑃𝑟
                 𝑢∗ =

𝑢

𝑢𝑚

                    𝜃 =
𝑇 − 𝑇𝑤
𝑇° − 𝑇𝑤

                                             (4) 

Where 

𝐵 = 1 + 8𝐾𝑛                                                                                                                                                          (5) 
By applying non-dimensional variables and substituting Eq. (3) into Eq. (1), the energy equation can be written as: 

 𝐴 − 𝑟∗2
 
𝜕𝜃

𝜕𝑥∗
=

𝜕2𝜃

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝜃

𝜕𝑟∗
+ 𝐵𝑟(

𝜕𝑢∗

𝜕𝑟∗
)2                         𝐴 =

1 + 4𝐾𝑛

𝐵2
                                                (6) 

𝜕𝜃

𝜕𝑟∗
= 0         𝑎𝑡         𝑟∗ = 0                                                                                                                               (7𝑎) 

𝜃 = 1         𝑎𝑡          𝑥∗ = 0                                                                                                                                  (7𝑏) 

𝜃𝑠 =
𝑇𝑠 − 𝑇𝑤
𝑇° − 𝑇𝑤

=
𝐹𝑡 − 2

𝐹𝑡

𝐾𝑛

𝑃𝑟

4𝛾

1 + 𝛾

1

𝐵

𝜕𝜃

𝜕𝑟∗
|𝑟∗=1

𝐵 
                                                                                            (7𝑐) 

As 𝑥 → ∞ then 
𝜕𝜃

𝜕𝑥∗ → 0, therefore Eq. (6) becomes 

𝜕2𝜃

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝜃

𝜕𝑟∗
+ 𝐵𝑟(

𝜕𝑢∗

𝜕𝑟∗
)2 = 0                                                                                                                          (8) 

The fully developed temperature profile can be derived from Eq. (8) by applying Eq. (7a) and Eq. (7c) as boundary 

conditions: 

𝜃∞ = −𝐵𝑟𝐵2𝑟∗4 +
𝐵𝑟

𝐵2
 8

𝐾𝑛

𝑃𝑟

2𝛾

1 + 𝛾
+ 1                                                                                                        (9) 

Therefore 

𝜃 𝑥∗, 𝑟∗ = 𝜃𝑑 𝑥
∗, 𝑟∗ + 𝜃∞ 𝑟

∗                                                                                                                      (10) 

By substituting Eq. (10) into Eq. (6) we obtain: 

 𝐴 − 𝑟∗2
 
𝜕𝜃𝑑

𝜕𝑥∗
=

𝜕2𝜃𝑑

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝜃𝑑

𝜕𝑟∗
                                                                                                                    (11) 

By applying the method of separation of variables we have: 

Assuming: 𝜃𝑑 𝑥
∗, 𝑟∗ = 𝑋 𝑥∗ 𝑅(𝑟∗) 
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𝑋 ′ + 𝜆2𝑋 = 0                                                                                                                                                       (12) 

𝑅′′ +
1

𝑟∗
𝑅′ + 𝜆2 𝐴 − 𝑟∗2

 𝑅 = 0                                                                                                                     (13) 

The solution for Eq. (12) is: 

𝑋 𝑥∗ = 𝐶𝑒𝑥𝑝 −𝜆2𝑥∗                                                                                                                                       (14) 
By defining the following transformation: 

𝑃 = 𝜆𝑟∗2
                             𝑊(𝑃) = 𝑒

𝑃
2𝑅 𝑟∗                                                                                                       (15) 

Eq. (13) may be written as: 

𝑃
𝜕2𝑊

𝜕𝑃2
+  1 − 𝑃 

𝜕𝑊

𝜕𝑃
+  

𝜆𝐴

4
−

1

2
 𝑊 = 0                                                                                                   (16) 

Eq. (16) is known as Kummer equation and the solution is: 

𝑊(𝑃) = 𝑐𝑀  
1

2
−

𝜆𝐴

4
 , 1, 𝑃                                                                                                                               (17) 

Where 𝑀(𝑎, 𝑏, 𝑝) is written in the form of following series: 

𝑀 𝑎 , 𝑏 , 𝑃 = 1 +
𝑎

𝑏
𝑃 +

𝑎(𝑎 + 1)

𝑏(𝑏 + 1)

𝑃2

2!
+ ⋯ +

𝑎 𝑎 + 1 … (𝑎 + 𝑛 − 1)

𝑏 𝑏 + 1 … (𝑏 + 𝑛 − 1)

𝑃𝑛

𝑛!
+ ⋯                                  (18) 

By substituting 𝜃 𝑟∗, 𝑥∗ = 𝑅 𝑟∗ 𝑋(𝑥∗) into Eq. (7c) we obtain: 

𝑅 𝑟∗ |𝑟∗=1
𝐵 

=
𝐹𝑡 − 2

𝐹𝑡

𝐾𝑛

𝑃𝑟

4𝛾

1 + 𝛾

1

𝐵

𝜕𝑅

𝜕𝑟∗
|𝑟∗=1

𝐵 
                                                                                            (19) 

By solving Eq. (19) we can find 𝜆𝑛 . 

Therefore the solution for the temperature distribution may be written as: 

𝜃𝑑 𝑥
∗, 𝑟∗ =  𝑍𝑛𝑒

−𝜆𝑛
2𝑥∗

∞

𝑛=1

𝑅𝑛 𝑟
∗                                                                                                                 (20) 

As the Eq. (13) is Sturm-Liouville equation and the eigenfunctions are orthogonal with respect to weighting 

function, by applying Eq. (7b)  𝑍𝑛  can be written as: 

𝑍𝑛 =
 𝑅𝑛(𝑟∗)

1
𝐵 

0
 𝐴 − 𝑟∗2

 𝑟∗𝑑𝑟∗

 𝑅𝑛
2(𝑟∗)

1
𝐵 

0
 𝐴 − 𝑟∗2

 𝑟∗𝑑𝑟∗
                                                                                                               (21) 

The average temperature in the circular tube can be written as: 

𝑇𝐵 =
2

𝑢𝑚𝑟0
2
 𝑢𝑇𝑟 𝑑𝑟

𝑟0

0

                                                                                                                                     (22) 

Putting the equation (22) into non-dimensional form, the dimensionless bulk temperature may be written as: 

𝜃𝐵 = 2𝐵2  𝑢∗𝜃(𝑥∗, 𝑟∗)𝑟∗ 𝑑𝑟∗

1
𝐵 

0

                                                                                                                  (23) 

The heat flux at the wall may be written as: 

−𝑘(
𝜕𝑇

𝜕𝑟
)𝑟=𝑟0

= ℎ𝑥 𝑇𝐵 − 𝑇𝑤                                                                                                                             (24) 

by putting Eq. (24) into non-dimensional form we obtain: 

ℎ𝑥 = −
2𝑘

𝐷𝐵𝜃𝐵

(
𝜕𝜃

𝜕𝑟∗
)𝑟∗=1

𝐵 
                                                                                                                                (25) 

The local Nusselt number can be written as: 

𝑁𝑢𝑥 = −
2

𝐵𝜃𝐵

 
𝜕𝜃

𝜕𝑟∗
 
𝑟∗=1

𝐵 
                                                                                                                               (26) 

 

3.    RESULTS AND DISCUSSION 

All the calculations have been carried out by assuming 𝛾 = 1.4 and 𝐹𝑡 = 1. In Figure 1 the effect of Prandtl number 

on fully developed Nusselt number in different Knudsen number is presented. It is shown that by increasing Prandtl 

number the fully developed Nusselt number increases. When 𝐾𝑛 = 0, the variation of Prandtl number does not have 

effect on Nusselt number. It is also evident that in lower Prandtl numbers fully developed Nusselt number changes 

more by variation of rarefaction. 
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Figure 1. Variation of fully developed Nu as a function of Pr 

for different Kn and Br=0 

 

Figure 2. Variation of fully developed Nu as a function of Kn 

with and without  viscous dissipation (Pr=0.8) 

 

 

In Figure 2 the variation of fully developed Nusselt number by different rarefactions with and without viscous 

dissipation is given. It is seen that by increasing Knudsen number the fully developed Nusselt number decreases and 

it has more decreasing effect when viscous dissipation is taken into account. 

In Figure 3 the solid lines shows the variation of Nusselt number in the length of tube at 𝐵𝑟 = 0. It is clear that by 

increasing Knudsen number the fully developed Nusselt number will decrease. By considering the influence of 

viscous dissipation, it can be seen that a jump occur in Nusselt profile and the fully developed Nusselt number 

increases. Neglecting viscous dissipation, the fully developed Nusselt number decreases from 3.656 to 3.069 by 

increasing Knudsen from 0 to 0.1 that is about 16% decrease in Nusselt number while in the presence of viscous 

dissipation the fully developed Nusselt number decreases about 50%. 

 

Figure 3. Variation of the local Nu as a function of dimensionless axial coordinate for different Kn and Br (Pr=1) 

 

The effect of Brinkman number on Nusselt number is depicted in Figure 4. It is found that the Nusselt number in 

developing region has greater values for greater Brinkman numbers. It is shown that the fully developed Nusselt 
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number increases by considering the effect of viscous dissipation. When the Brinkman number is not equal to zero 

which means the viscous dissipation is present, variation of Brinkman number does not have effect on fully 

developed Nusselt number. 

 

Figure 4. Variation of the local Nu as a function of dimensionless axial coordinate for different Br (Kn=0.1, Pr=1) 

 

Figure 5 illustrates the variation of Nusselt with different Brinkman numbers. Fully developed Nusselt number 

reaches a same value for both positive and negative Brinkman numbers. When Brinkman is negative the fluid is 

being heated and therefore there is a location in the length of tube that the bulk temperature is equal to the wall 

temperature. There exists a singular point where Nusselt number goes to the infinity.  

 

Figure 5. Variation of the local Nu as a function of axial coordinate for positive and negative Br (Kn=0.4, Pr=1) 
 

Table 1 and Table 2 show the fully developed Nusselt number for different values of Knudsen, Prandtl and 

Brinkman.      
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Table 1. The fully developed Nusselt number (Br = 0) 

𝐾𝑛 𝑃𝑟 = 0.6 𝑃𝑟 = 0.7 𝑃𝑟 = 0.8 𝑃𝑟 = 0.9 𝑃𝑟 = 1 

0.00 3.6567 3.6567 3.6567 3.6567 3.6567 

0.01 3.5476 3.5770 3.5992 3.6167 3.6307 

0.02 3.4310 3.4871 3.5302 3.5643 3.5919 

0.03 3.3104 3.3906 3.4528 3.5024 3.5429 

0.04 3.1886 3.2900 3.3695 3.4335 3.4861 

0.05 3.0678 3.1875 3.2824 3.3596 3.4234 

0.06 2.9494 3.0848 3.1934 3.2823 3.3565 

0.07 2.8348 2.9832 3.1036 3.2031 3.2866 

0.08 2.7246 2.8837 3.0142 3.1230 3.2148 

0.09 2.6192 2.7871 2.9261 3.0428 3.1422 

0.1 2.5188 2.6937 2.8398 2.9634 3.0693 
 

Table 2. The fully developed Nusselt number (Br = 0.01) 

𝐾𝑛 𝑃𝑟 = 0.6 𝑃𝑟 = 0.7 𝑃𝑟 = 0.8 𝑃𝑟 = 0.9 𝑃𝑟 = 1 

0.00 9.5999 9.5999 9.5999 9.5999 9.5999 

0.01 8.1921 8.3829 8.5319 8.6515 8.7496 

0.02 7.1335 7.4279 7.6652 7.8604 8.0239 

0.03 6.3104 6.6607 6.9500 7.1930 7.4000 

0.04 5.6531 6.0319 6.3512 6.6239 6.8595 

0.05 5.1167 5.5082 5.8434 6.1338 6.3878 

0.06 4.6712 5.0656 5.4080 5.7081 5.9733 

0.07 4.2955 4.6870 5.0309 5.3353 5.6068 

0.08 3.9746 4.3597 4.7013 5.0065 5.2806 

0.09 3.6976 4.0742 4.4112 4.7144 4.9888 

0.1 3.4559 3.8230 4.1538 4.4536 4.7264 

 

4.     CONCLUSIONS   

In this study an analytical solution for the Graetz problem in microchannels with circular cross section is presented. 

Viscous dissipation effect is taken into account. It is found that viscous dissipation causes a jump in Nusselt profile 

and the fully developed Nusselt number increases. In the presence of viscous dissipation variation of Brinkman 

number does not have effect on fully developed Nusselt number. It can be concluded that under certain conditions 

the influence of viscous dissipation on Nusselt number is significant and should not be neglected. 
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