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ABSTRACT 

The conservative high-order accurate spectral difference method is presented for simulation of rotating shallow-

water equations. The method is formulated using Lagrange interpolations on Gauss-Lobatto points for the desired 

order of accuracy without suffering numerical dissipation and dispersion errors. The optimal third-order total 

variation diminishing (TVD) Runge-Kutta algorithm is used for the time marching process. The Godunov-type 

method by solving the Riemann problem approximately using Roe's technique is utilized at the element interfaces to 

couple the discontinuous element together at that point. Some 1D and 2D shallow water wave propagation problems 

with Gaussian shaped water drops are simulated and compared for different order constrictions of spectral difference 

method. The results from the second-order central difference scheme and the Lax-Wendroff scheme are also 

included for comparison purposes. The results show that spectral difference method is a good numerical tool for 
accurate simulation of shallow water equations without suffering the dispersive or dissipative errors and provides an 

alternative to other high-order accuracy methods in terms of efficiency. 

 

Keywords: Shallow-water equations, High-order accurate methods, Spectral difference method, Roe's Riemann 

solver, Water drop problem  

 

1.    INTRODUCTION  
 

The shallow water equations (SWEs) describe the evolution of a hydrostatic homogeneous (constant density), 
incompressible fluid in response to gravitational and rotational accelerations and they are derived from the principles 

of conservation of mass and conservation of momentum. The SWEs (also called SaintïVenant equations) are one of 

the simplest form of the equations of motion that can be used to describe the horizontal structure of an atmosphere 

and ocean that model the propagation of disturbances in fluids. They are widely used to model the free surface water 

flows such as periodic (tidal) flows, transient wave phenomena (tsunamis, flood waves, and dam-break waves), etc. 

The shallow water equations are only relevant when the horizontal scale of the flow is much smaller than the depth 

of the fluid. The key simplification that underlies the shallow water equations that hydrostatic balance between the 

gravity and pressure gradient in vertical direction, implying that the vertical acceleration is negligible, therefore 

horizontal flow is independent of height. However, vertical velocity is not necessarily zero, vertically integrating 

allows the vertical velocity to be removed from the equations [1, 2].  

Numerical methods have become well established as tools for solving SWEs. There have been various numerical 

schemes to simulate the SWEs, such as the finite difference [3], finite element [4] and finite volume [5] methods. In 
recent years, more and more attentions have been paid to the finite volume methods because the schemes use the 

conservative form of the governing equations [6, 7, 8]. The finite volume methods has also the advantage over the 

finite difference method that it can be implemented on any type of grid, structured or unstructured, and the 

advantage over the finite element that it requires significantly less computational effort [9].  

Selecting a numerical scheme for the purpose of solving SWEs may involve some arbitrary choices. On the other 

hand, low-order schemes are desirable from the standpoint of computational economy; however the simpler schemes 

poorly represents most properties of original equations, such as accurate determination of wave propagation along 

large length and time scales. Therefore, higher order accuracy and dissipation and dispersion free numerical schemes 

are desired. Many high-order accurate schemes have been presented for SWEs, such as the high-order finite 

difference scheme [10], the spectral element methods [11, 12], and high-order finite volume methods [13, 14, 15]. 

Recently, another type of higher-order accurate, conservative and computationally efficient scheme was introduced 
for the solution of hyperbolic conservation laws [16]. This scheme is known as spectral difference method (SDM) 

by combining the benefits of finite element method and finite difference method. Therefore, the SDM is 

computationally more efficient than its counterpart spectral/hp element methods. The applications of this method 

have been well established in the numerical treatment of compressible flow equations in a series of papers [17, 18, 
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19, 20]. However, to the author's best knowledge, the SDM has never been applied to the modeling SWEs. In this 

paper, this method is adopted in the integration of 1D and 2D modeling of SWEs.  

The paper is organized as follows. In Section 2, the governing equations are stated in dimensionless conservative 

form. The spectral difference method to solve the governing SWEs is described in Section 3. In Section 4, several 

1D and 2D shallow water problems are simulated by SDM. Finally, the concluding remarks on success of SDM to 

the SWEs are outlined in Section 5. 
 

 

2.    MATHEMATICAL MODEL  
 

The illustrative diagram of unsteady shallow water flow of homogenous fluid over an irregular bottom is shown in 

Figure 1.  
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Figure 1. The schematics diagram for shallow water equations. 

 

In this figure, )Ĕ,Ĕ(Ĕ yxb and )Ĕ,Ĕ,Ĕ(Ĕ tyxh  is the bottom elevation and local and instantaneous fluid layer thickness, 

respectively. The surface elevation is defined as: 
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where H is a constant average reference vertical length. Using the following nondimensionalization to the variables: 
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where the variables with superscript denote the dimensional quantities and the V , L , and H are the horizontal 

velocity scale, horizontal length scale, and vertical length scale. The shallow water equations in dimensionless form 

can be written in the following conservative form: 
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where Q  is the vector of conserved variables, and F  and G  are the flux vectors in x and y directions, and S is the 

source vector. Expressed in vector forms, 
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where u and v  are the velocity components in x and y directions, and h is the water depth. The characteristic 

nondimensional quantities; 
Lf

V
Ro= , and 

gH

V
Fr =  are Rossby and Froude numbers. Here, f  andg are Coriolis 

parameter, and gravitational acceleration, respectively. In the nondimensional form the surface elevation can be 

written as: 
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 1),,(),(=),,( -+ tyxhyxbtyxh        (4)  

 
One important conserved quantity in the shallow water system is potential vorticity. The conservation of potential 

vorticity in nondimensional form is written as:  
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D C
 is the material derivative. In a special case, for the case 

of 0=
yµ

µ
, and 0=v , the 1D shallow water equations can be written as:  
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3.    SPECTRAL DIFFERENCE METHOD  
 

We first utilize the spectral difference method to solve the system of equations given in Eq. (6) for the proposed 1D 

model, after that we generalize for 2D system. In the spectral difference method, the physical domain is divided 

M spectral element for 1D case. Each element also includes N  solution points as shown in the Figure 2.  
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Figure 2. The representation of computational elements for4=N  for i=1,2, ...,M.  

Circles and rectangles represent the solution and flux points. 

 

By using these N  solution points for each element, the thN -order spectral difference method is formulated. First, 

the transformation from the physical space to the computational space is required for each element and given as 
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If we construct linear transformation for the thi  element such as:  

 

 j
iii

ji xxxx x)(=

2

1

2

1

2

1,
-+-

-+        (8)  

where the subscripts i  and j  represent the element number and corresponding solution point for each element, 

respectively. The physical and computational spaces are represented by x  and x, respectively. Therefore, the 

metric of the transformation can easily be obtained from Eq. (8) as:  
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where ih  is the length of the thi spectral element, then the governing equation becomes:  
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In the framework of spectral difference method, the solution variables are defined in solution points and the fluxes is 

defined on the flux points. Distribution of these solution and flux points in standard elements for the fourth-order 

spectral difference scheme is also shown in Figure 2. However, the derivative of the flux 
xµ

µ DF1

 should be 

computed in the solution points. These solution and flux points are specifically located on the computational element 

by satisfying the certain properties such as conservativity. The solution points are chosen to be the Gauss quadrature 

points defined by:  
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The flux points are the Gauss-Lobatto points given by: 
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By using N points, the (N-1) degree of Lagrange interpolation polynomials can be constructed as:  
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Similarly, for the fluxes at the flux points, we use N  degree Lagrange interpolation polynomials given by  

 '

2

1

2

10=

1

=)(
++

S
µ

µ

jj

N
j

D

f
F

fx
x

       (15) 

where the base function is 
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and the derivative of the base function can be analytically computed.  

 

For 2D SWEs system given in Eq. (3) the same procedure is applied. The physical domain is divided xM  spectral 

element in x  direction, and yM  spectral element in y direction . And each element includes N  solution points in 

each direction as shown in the Figure 3. For each element, the transformation from the physical space to the 

computational space is required. In order to achieve an efficient implementation, all physical elements in ),( yx  are 

transformed into a standard element as shown in the Figure 3. 

 
Figure 3: The representation of two-dimensional computational element for N=4. 
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The general transformation can be written as: 
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where K  is the number of points used to define the physical element (if we use bilinear element 4=K ). It should 

be noted that the selection of bilinear or quadratic element is independent of the order of the scheme. And ),( ii yx  

are the Cartesian coordinates of those points, and ),( hxiN  are the shape functions. For the transformation given 

above, the governing equations in the physical domain are then transformed into the computational domain, and the 

transformed equations take the form:  
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 is the vector of conserved variables, and F
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 are the flux vectors in computational domain 

and given as 
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where || J  is the determinant of the Jacobian matrix J  given as; 
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The metrics of transformation can be computed according to  
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If our physical domain is also Cartesian, the transformed equations in the computational domain becomes: 
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where x
ih  is the length of the thi  spectral element in x  direction and 

y
jh  is the length of the thj  spectral element in 

y  direction.  

 

Basically in the SDM framework, we only need to use Lagrange polynomial curve fitting procedure described 

Eqs.(11)-(16) and find the desired flux derivative analytically. In summary, to compute the 
xµ

µF
 we use the 

following procedure for each element:  

1. Reconstruct solution by fitting a polynomial of degree (N-1) of the solution variables Q 's, and evaluate Q 's at 

the flux points.  

2. Evaluate fluxes at the flux points.  

3. Solve the Riemann problem at the interfaces between elements to obtain corrected unique fluxes at the end flux 
points of each element. For every interface, there is two different flux value, one from the left side (-) and one from 

the right (+) side. To solve this Riemann problem, the unified values of the flux at the interface are computed by 

using the Roe's approximate Riemann solver given by  
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where diagonal eigenvalue matrix L and corresponding right eigenvector matrix R  are formulated in the following 

subsection.  

4. Reconstruct the fluxes by fitting a N degree polynomial through fluxes at the flux points, and evaluate the 
derivatives of the reconstructed fluxes at the solution points. 

Similar treatment is also used for computing the derivatives of G fluxes. There is important practical 

implementation issue to improve the efficiency that we need to construct the base functions for Lagrange 

polynomial and the derivatives before starting the time integration procedure. 
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3.1. Approximate Riemann Solver 
The spectral difference method is fully conservative due to use of Riemann fluxes across element boundaries. The 

state variables are not continuous across the element boundaries because of N  degree of polynomial construction 

for each element. A Riemann solver is required to compute the fluxes at the interface as shown in the Figure 4.  

 

element i+1element i
x

q

interface

 
Figure 4. Riemann problem at the interface between two element. 

 

For a hyperbolic system of equations given as Eq. (3), if the Jacobian matrix of the flux vector is constant(i.e, 

Q

F
H
µ

µ
= ), the exact values of the fluxes at the interface are computed by using Godunov method [21] as follows: 
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where L and R  are diagonal eigenvalue ant right eigenvector matrices of the matrix H . Here, ||L  means the 

absolute value of the eigenvalue matrix. In our SWEs problem, H  is not a constant matrix, therefore we use the 

Roe's approximate formulation [22]. The options for linearization are  
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Since we seek a locally constant value of H , we define a state of )(=)(= -+ QHQHH . Then by using Eqs. (22)-

(23) we get  
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Using the three equations given in vector form of Eq. (24), approximate state variables at the interface for F  is 

given as:  
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Similarly approximate values for the G  fluxes is given as:  
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Once we found approximate values at the interfaces, the eigenvalue and right eigenvector matrices for F  become: 
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Similarly the eigenvalue and right eigenvector matrices for G  become: 
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For the 1D SWEs the approximate state is gives as: 
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and the eigenvalue and eigenvector matrices become: 
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3.2. Temporal Discretization 

In the current work, the equations are integrated in time with consideration of the optimal rd3 -order TVD Runge-

Kutta scheme given by [23] 
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4. RESULTS 
 

4.1. One Dimensional SWEs 
The spectral difference method proposed here is compared with two other classical schemes: the central difference 

scheme and the Lax-Wendroff scheme. The same time integration scheme is also used for the central difference 
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method. In this 1D case, the Gaussian shaped peak is added to h , and simulating an impulsive disturbance like a 

water drop hitting the surface. The initial condition given as:  
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where 0.1=a , and 100=b . The following reflecting boundary conditions is used:  

 1=)(1,1,=)(0, thth         (36) 

 0=)(1,0,=)(0, t
x

u
t

x

u

µ

µ

µ

µ
        (37)  

The simulation results for the water depth h for 15 equidistant time are shown in Figures 5, 6, and 7 for three 

different resolutions with 3rd and 4th-order spectral difference methods. The central difference and Lax-Wendroff 

schemes are also added for comparison purposes. The same number of solution points (spatial resolution) are used 

for all schemes. The time-step is chosen small to eliminate temporal discretization errors. The simulations have been 

done for the time interval 15].0[0, , and every 0.01 increments are plotted in the figures. As seen from the figures, 

the spectral difference method gives quite good results without suffering numerical oscillations and dissipation and 

dispersion errors even if we use small resolution. In these figures, the specified water drop at time t=0 initiates a 

water wave and moves towards to the boundaries and reflect bact. In this problem a wave complete its cycles in 0.1 

second, which means that the reflected wave should be back at time t=0.15.  Therefore, water depth h  should be the 

same at t=0 and t=0.15 if there is no numerical dissipation and dispersion and reflection errors. This one-

dimensional numerical experiments demonstrate that the proposed spectral difference method is suitable for solving  

shallow-water equations in long time integration without degenerating the actual wave structures. This numerically 

dissipation free computing is very important for geophysical fluid dynamics. 
 

4.2. Two Dimensional SWEs 
Now we apply the spectral difference method to 2D SWEs systems again with reflective boundary conditions and 

2D Gaussian shaped peak initial condition to the water depth [24]. The initial conditions: 
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where 0.1=a , and 100=b . The following reflecting boundary conditions is used:  
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Water drop initiates a wave that reflects off the boundary. A few snapshots of the dynamics graphic are shown in 

Figure 8 and Figure 9 for the 3rd-order and 4th-order spectral difference methods. The simulations are shown for the 

time interval [0, 0.1]. The time-step used in the simulations is 410= -Dt .  
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Figure 5. The water depth h computed by using 60 grid points with (a) central difference scheme;  (b) Lax-

Wendroff scheme;  (c) 3rd-order spectral difference scheme, and (d) 4th-order spectral difference scheme. The same 

number of solution points (spatial resolution) are used for all schemes. The time-step is chosen small to eliminate 

temporal discretization errors. Numerical dispersion and dissipation errors for (a) and (b) are quite huge.  
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Figure 6. The water depth h computed by using 120 grid points with (a) central difference scheme;  (b) Lax-

Wendroff scheme;  (c) 3rd-order spectral difference scheme, and (d) 4th-order spectral difference scheme. The same 

number of solution points (spatial resolution) are used for all schemes. The time-step is chosen small to eliminate 

temporal discretization errors. Numerical dispersion and dissipation errors for (a) and (b) are quite huge. 

  

 



IJRRAS 6 (1) ǒ January 2011 San & Kara ǒ High-Order Accurate Spectral Difference Method 

  

51 

 

 

x

h

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 Scheme: Central Difference
Resolution = 240
Dt=1.5x10

-5

Fr = 0.05

Time = [0, 0.15]

(a)

t = 0.05

t = 0.00

t = 0.10

t = 0.15

 x

h

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 Scheme: Lax-Wendroff
Resolution = 240
Dt=1.5x10

-5

Fr = 0.05

Time = [0, 0.15]

(b)

t = 0.05

t = 0.00

t = 0.10

t = 0.15

 

x

h

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 Scheme: Spectral Difference
Resolution = 240 (n=3, M=80)
Dt=1.5x10

-5

Fr = 0.05

Time = [0, 0.15]

(c)

t = 0.05

t = 0.00

t = 0.10

t = 0.15

 x

h

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1 Scheme: Spectral Difference
Resolution = 240 (n=4, M=60)
Dt=1.5x10

-5

Fr = 0.05

Time = [0, 0.15]

(d)

t = 0.05

t = 0.00

t = 0.10

t = 0.15

 
 

Figure 7. The water depth h computed by using 240 grid points with (a) central difference scheme;  (b) Lax-

Wendroff scheme;  (c) 3rd-order spectral difference scheme, and (d) 4th-order spectral difference scheme. The same 

number of solution points (spatial resolution) are used for all schemes. The time-step is chosen small to eliminate 

temporal discretization errors. Numerical dispersion and dissipation errors for the conventional second-order 

schemes (a) and (b) are still quite huge even if the resolution is selected as enough big as240 solution points.   
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Figure 8. Simulation of water drop by using 3rd-order spectral difference method. 

 


