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ABSTRACT
The conservative higbrder accurate spectral difference method is presented for simulation of rotating -shallow
water equatios. The method is formulated using Lagrange interpolations on Gabssto points for the desired
order of accuracy without suffering numerical dissipation and dispersion errors. The optimardbirdotal
variation diminishing (TVD) Rung&utta algorihm is used for the time marching process. The Godtype/
method by solving the Riemann problem approximately using Roe's technique is utilized at the element interfaces to
couple the discontinuous element together at that point. Some 1D and 2D shabowvaxee propagation problems
with Gaussian shaped water drops are simulated and compared for different order constrictions of spectral difference
method. The results from the secemrdler central difference scheme and the -Wendroff scheme are also
included for comparison purposes. The results show that spectral difference method is a good numerical tool for
accurate simulation of shallow water equations without suffering the dispersive or dissipative errors and provides an
alternative to other higbrde accuracy methods in terms of efficiency

Keywords: Shallowwater equationgigh-order accurate methodSpectral difference method, Roe's Riemann
solver,Water drop problem

1. INTRODUCTION

The shallow water equations (SWEs) describe the evolufoa hydrostatic homogeneous (constant density),
incompressible fluid in response to gravitational and rotational accelerations and they are derived from the principles
of conservation of mass and conservation of momentum. The SWEs (also callé¥&wntt equations) are one of

the simplest form of the equations of motion that can be used to describe the horizontal structure of an atmosphere
and ocean that model the propagation of disturbances in fluids. They are widely used to model the free surface wate
flows such as periodic (tidal) flows, transient wave phenomena (tsunamis, flood waves, dngalamaves), etc.

The shallow water equations are only relevant when the horizontal scale of the flow is much smaller than the depth
of the fluid. The key siplification that underlies the shallow water equations that hydrostatic balance between the
gravity and pressure gradient in vertical direction, implying that the vertical acceleration is negligible, therefore
horizontal flow is independent of height. Howee, vertical velocity is not necessarily zero, vertically integrating
allows the vertical velocity to be removed from the equations [1, 2].

Numerical methods have become well established as tools for solving SWEs. There have been various numerical
scheme to simulate the SWESs, such as the finite difference [3], finite element [4] and finite volume [5] methods. In
recent years, more and more attentions have been paid to the finite volume methods because the schemes use the
conservative form of the govermjrequations [6, 7, 8]. The finite volume methods has also the advantage over the
finite difference method that it can be implemented on any type of grid, structured or unstructured, and the
advantage over the finite element that it requires significaggly tomputational effort [9].

Selecting a numerical scheme for the purpose of solving SWEs may involve some arbitrary choices. On the other
hand, loworder schemes are desirable from the standpoint of computational economy; however the simpler schemes
poaly represents most properties of original equations, such as accurate determination of wave propagation along
large length and time scales. Therefore, higher order accuracy and dissipation and dispersion free numerical schemes
are desired. Many higbrder accurate schemes have been presented for SWEs, such as tledbigfinite
difference scheme [10], the spectral element methods [11, 12], ardrdighfinite volume methods [13, 14, 15].

Recently, another type of higherder accurate, conservativedacomputationally efficient scheme was introduced

for the solution of hyperbolic conservation laws [16]. This scheme is known as spectral difference method (SDM)
by combining the benefits of finite element method and finite difference method. Therefer&DiM is
computationally more efficienthan its counterpart specttglfl element methods. The applications of this method

have been well established in the numerical treatment of compressible flow equations in a series of papers [17, 18,
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19, 20]. Howeverto the author's best knowledge, the SDM has never been applied to the modeling SWEs. In this

paper, this method is adopted in the integration of 1D and 2D modeling of SWEs.

The paper is organized as follows. In Section 2, the governing equations atdrsi@itaensionless conservative

form. The spectral difference method to solve the governing SWEs is described in Section 3. In Section 4, several
1D and 2D shallow water problems are simulated by SDM. Finally, the concluding remarks on success of SDM to

the SWEs are outlined in Section 5.

2. MATHEMATICAL MODEL

The illustrative diagram of unsteady shallow water flow of homogenous fluid overegular bottom is shown in
Figure 1
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Figure 1 The schematics diagram for shallow water equations.

In this figure, ﬁEE and ﬁEEE) is the bottom elevation and local and instantaneous fluid layer thickness,
respectively. The surface elevation is defined as:

RE 5B =REH+REFEH- H (1)
where H is aconstant average reference vertical length. Using the following nondimensionalization to the variables:
u:_lE,V:_E’h:_tE't:E’)(:_E,y:_ﬁ,h:Q_E’b:k_E (2)
\Y V H L L L H H

where the variables with superscript denote the dimensional quantities awd, the and H are the horizontal
velocity scale, horizontal length scale, and vertical length scale. The shallow water equations in dimensionless form
can be written in the following conservative form:
@ +£ +E =S (3)
HEpxX Ry
where Q is the vector of conserved variables, @dand G are the flux vectors inkand y directions and Sis the

sourcevector. Expressed in vector forms,

e o

¢hg & wh @ g v § g 0

Q:@;h‘éF:Sﬂh+EFr'2h236=é wh  Us=¢RoNn- Fro2p 2 u
> U 7 : é 1_ .0 X

h & U h+ZFr2h?y & )

L - uvh u g/ 2 t g- Ro luh- Fr'zhﬁg
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where uand v are the velocity components irand y directions, andhis the water depthThe characteristic
nondimensional quantitiedRo= % and Fr = LH are Rossby and Froude numbers. Hereandg are Coriolis

parameter, and gravitational acceleration, respectivalyhe nondimensional form the sacé elevation can be
written as:
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h(X1 y,t) = b(X, y) + h(X1 y,t) -1 (4)

One important conserved quantity in the shallow water system is potential vorticity. The conservation of potential
vorticity in nondimensional forns written as:

D Rol+w
— (———)=0 5
~ ( - ) ©)
wherew = w_oH; is the vorticity, and—( = “( ) +uD( ) is the material derivativén a special case, for the case
[
of L 0, andv =0, the 1D shbow water egiations can be written as:
Ky
1D 1D
HQ + |JF - SlD (6)
Mt pX
where
é’]ﬂ e u [} e 0 g
1D _ © % 4 N olD 4 N
QP =g uFP =l 2, p-2p2USP =€ .2 bU
u &2 H & uxH

3. SPECTRAL DIFFERENCE METHOD

We first utilize the spectral difference method to solve the system of equations given in Eq. (6) for teedpt@po
model, after that we generalize for 2D system. In the spectral difference method, the physical domain is divided
M spectral element for 1D case. Each element also incINdssluion points as shown in tHégure 2

i-1 i+1

X ;

i-1/2 X

i+1/2

Figure 2 The representation of computational elementdNfer4 for i=1,2, ...,M
Circles and rectangles represent the solution and flux points.

By using theseN solution points for each element, th"-order spectral difference method is formulated. First,
the transformation from the physical space to the computational space is required for each element and given as

Q HFlD X —glP

(7)
Ui W X
If we construct linear transfmation for thei™ element such as:
X | :xi_£+(x_+1- Xi_E)XJ' (8)

I
2 2 2
where the subscripts and j represent the element number and corresponding solution point for each element,
respedtely. The physical and computational spaces are represented &yd x, respectively. Therefore, the
metric of the transformation can easily be obtained from Eq. (8) as:

K:;:i (9)

where h, is the length of thé" spectral element, then the governing equation becomes:
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1D 1D

&:-IJF_£+81D (10)
Ht e h

In the framework of spectral difference method, the solution variables are definediongotints and the fluxes is

defined on the flux points. Distribution of these solution and flux points in standard elements for theriderrth

1D
spectral differencescheme is also shown in Figure However the derivative of the ﬂuqu should be
X

computed in the solution points. These solution and flux points are specifically located on the computational element
by satisfying the certain properties such as conservativity. The solution points are chosen to be the Gauss quadrature
points defined by:

=21 cosCtp) =12, (11)
The flux points are the Gautsbatto points given by:
x 1 =1- cogp), =01, N (12)
+5 2 N
By usingN points, the I-1) degree of Lagrange interpolation polynomials can be constructed as:
QlD (X) S —1qJ j (13)
where the base function is:
N X=X
f P j=1.j, |( ) (14)
- X
Similarly, for the ﬂuxes at the flux points, we ubk degree Lagrange interpolation polynomials given by
1D
=8t o, (15)
WX 217
where the base function is
X' X 1
j+5
fa =Pl i) (16)
I 2 i+1 i Xj +1

and the derivative of the base function can be analytically computed.

For 2D SWEssystemgiven in Eq. 8) the same procedure is applied. The physical domain is divii&dspectral
elementin x direction, andM ¥ spectral elemerin y direction . And each element includés solution points in

each diection as shown in the Figure Bor eachelement, the transformation from the physical space to the
computational space is required. In order to achieve an efficient implementation, all physical elerfvenfs ane

transformed into a standaetement as shown in the Figure 3
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Figure 3: The representation of tvebmensional computational element fr4.

44



IJRRAS 6 (1) 6 January2011 San & Karad High-Order Accurate Spectral Difference Methoc

The general transformation can be written as:

axo &% 0

%8= SN, (X:h)%_ 8

¢y~ Cli+
where K is the number of points used to define the physical element (if we lissabielementK =4). It should
be noted that the selection of bilinear or quadratic element is independent of the order of the schemey.And
are the Cartesian coordinates of those points, Mj{(e,/7) are the shape functions. For the transformation given
above, the governing equations in the physical domain are then transformed into the computational domain, and the
transformed equatlons take the form:

N W m _s 17)

M M
where Q =|J |Q is the vector of conserved variables, d@hdand G are the flux vectors in computational domain
and given as

&Fo &, X, 2eFg

é~u=|J1¢
= €ly] X ytgau

where| J | is the determinant of the Jdtan matrixJ given as;

éXX X, @
J=¢ O
ey)( yhl]
The metrics of transformation can be computed according to
Yn Xy Yx Xy
Xy =—— X, =-— h, =-——h,=—. (18)
S I N R I R VY B N
If our physical domain is also Cartesian, the transformed equations in the computatioaial becomes:
£+£ix+£i:3 (19)
Mt X h* o pA kY

where h* is the length of the™ spectral element irx direction andhjy is the length of theg™ spectral element in
y direction.

Basically in the SDM framework, we only need to use Lagrange polynomial curve fitting procedure described

Egs.(11)(16) and find the desired flux derivative analytically. In summary, to computeElt:hewe use the
X
following procedure for each element:

1. Reconstruct solution by fitting a polynomial of degieel] of the solution variable® 's, and evaluat® 's at

the flux points.

2. Evaliate fluxes at the flux points.

3. Solve the Riemann problem at the interfaces between elements to obtain corrected unique fluxes at the end flux
points of each element. For every interface, there is two different flux value, one from the left aideofe from
the right (+) side. To solve this Riemann problem, the unified values of the flux at the interface are computed by
using the Roe's approximate Riemann solver given by

I:lnterface (F +F )' A R | I— I R (Q Q ) (20)

where diagonal elgenvalue matrhx and corresponding right eigenvector matfRxare formulated in the following
subsection.

4. Reconstruct the fluxes by fitting a N degree polynomial through fluxes at the flux points, and evaluate the
derivatives of theeconstructed fluxes at the solution points.

Similar treatment is also used for computing the derivativesGofluxes. There is important practical
implementation issue to improve the efficiency that we need to construct the base functions for Lagrange
pdynomial and the derivatives before starting the time integration procedure.
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3.1. Approximate Riemann Solver

The spectral difference method is fully conservative due to use of Riemann fluxes across element boundaries. The
state variables are not contous across the element boundaries becaud¢ afegree of polynomial construction

for each element. A Riemann solver is required to compute the fluxes étietti@ae as shown in the Figure 4

q

interface

element i element i+1

Figure 4.Riemann problem at the imface between two element.

For a hyperbolic syet of equations given as Eq.),(¥ the Jacobian matrix of the flux vector is constant(i.e,

H= % ), the exact values of the fluxes at the interface are computed byGilugpov method [Jlas follows:
3

1 . ; 1 1, 4 _
Finterface= 5 (F " +F )-ERILIRl(q -q) (21)

where L and R are diagonal eigenvalue ant right eigenvector matrices of the ntatrixlere |L | means the

absolute vala of the eigenvalue matrix. In our SWEs problerh,is not a constant matrix, therefore we use the
Roe's approximate formulation [22]he options for linearizaticare

F(Q=F@Q")+HQ"IQ- Q"] (22)
F(Q=F@Q)+H(@Q)Q-Q] (23)

Since we seek a locally constant valuetbf we define a state dff = H(Q*) = H(Q"). Then by using Egs. (22)
(23) we get

FQ")-F(Q)=H@Q -Q) (24)

Using the three equations given in vector form of Eq),(a¢pproximate state variables at the interfaceFoiis
given as:

h :%(h+ +h) (25)
. (uth*-uh )+— (ut -u Wh'h (26)
h™-h
g u'vh*-uvh)-avh' -vh) 27)
Wu-u )\/h+h‘

Similarly approximate values for th@é fluxes is given as:
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1

h= E(h+ +h) (28)
__(v'h"-v h)- (v'-v )Wh'h
V= — (29)
h* - h
U(UVh uvh)-vuh -uh) (30)
(v -v )\/h*h'
Once we found approximate values at the interfaces, the eigenvalue and right eigenvector makridectone:
e 1 1 [}
. L & 3 0 7 u
Q- Fr- JF 0 o 9 & Foa R
L=¢ O GR=S -1l o dyptdll
¢ o0 0 U+Fr- 1\/_u e 1V Y 1 Y
e ¢ u
g H
Similarly the eigenvalue and right eigenvector matrices¥doecome:
e_ 1 45 1 @
&-Frh 0 o @ 2 V- Fr'ivh \7+Fr'1\/ﬁ 3
_ € u_ <
L=é O v 0 uR=g ! =1 =0
€ 0 0 v+Fr'l\/ﬁl\J é—- Fr_l:\/ﬁ *+Fr ! \/—
e ¢! gu U
é 1 0 1 EI
For the 1D SWESs the approximate state is gives as
h= %(h+ +h) (31)
1
] :E(u +u’) (32)

and the eigenvalue and eigenvector matrices become:
e Jn P}
-Frivh o 9 h o

é
e —U A -1 -1~
i - > Fr Fr
g O a+Frivhy g 1 A E

L=

3.2. Temporal Discretization
In the current work, the equations are integrated in time with consideration of the opffrraider TVD Runge
Kutta scheme given H3]

Q¥ =Q"+DRHIQ")
@_3an, 1w, 1 @
Q 4Q +4Q +4DtRHS(Q ) (33)

Q™ =2Q"+2Q® +ZDIRHIQ®)

W1 uGl
W R w2 h

where RHYQ) = S- for the Cartesian physical domain.
4. RESULTS

4.1.0One Dimensional SWEs
The spectral diffemrece method proposed here is compared with two other classical schemes: the central difference
scheme and the Lawendroff scheme. The same time integration scheme is also used for the central difference
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method. In this 1D case, the Gaussian shaped pesdded toh, and simulating an impulsive disturbance like a
water drop hitting the surface. The initial condition given as:

. b(x_l)z
h(xt=0)=1+ae 2 (34)
u(x,t=0)=0 (35)
wherea =0.1, and b =100. The following reflecting boundary conditions is used:
h(O,t)=1,h(1,t) =1 (36)
Bon=0Ean=o0 (37)
pX pX

The simulation results fothe water deptth for 15 equidistant time are shown in Figufes6, and 7for three

different resolutions with 3rd and 4trder spectral difference methods. The central difference andMesadroff

schemes are also added for comparison purposes. The same number of solution points (spatial resolution) are used
for all schemes. fie timestep is chosen small to eliminate temporal discretization errors. The simulations have been
done for the time intervgD, 0.15], and every0.01 increments are plotted in the figures. As seen from the figures,

the pectral difference method gives quite good results without suffering numerical oscillations and dissipation and
dispersion errors even if we use small resolutionthese figures, the specified water drop at time t=0 initiates a
water wave and moves tovas to the boundaries and reflect bact. In this problem a wave complete its cycles in 0.1
second, which means that the reflected wave should be btigieat-015. Therefore, water depth shauld be the

same at t=0 and t=Ib if there is no numerical dipation and dispersion and reflection errors. This- one
dimensional numerical experiments demonstrate that the proposed spectral differenceasseiitedalefor solving
shallowwater equations in long time integration without degenerating the actualstraxturesThis numerically
dissipation free computinig very important for geophysical fluid dynamics.

4.2. Two Dimensional SWEs
Now we apply the spectral difference method to 2D SWEs systems again with reflective boundary conditions and
2D Gaussiarshaped peak initial condition to the water dd@#. The initial conditions:

1, 1,
- Bl(x- ) H(y- )]
hxyt=0)=l+tae 2 = 2 (38)

ux, y,t=0)=0,v(x,y,t =0)=0 (39)
wherea =0.1, and  =100. The following reflecting boundary conditiorssused:

u@,y,t) = 0,u(L,y,t) =0, (x.0) =0, (x, 1) = 0 (40)
Ly Ly

vx,01) =ov(x 1) = 0, 0,y = 0. @yt =0 (41)
X X

E(O, y,t) = O,m(l, y,t) = O,m(x,o,t) = O,E(x,l,t) =0 (42)

kX kX by by

Water drop initiates a wave that reflects off the boundary. A few snapshots of gmidyrgraphic are shown in
Figure 8 and Figure fr the 3d-order and 4tkorderspectral differencenethods. The simulations are shown for the

time interval [0, 0.1]. The timstep used in the simulationsX =10 4.
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(@ 1.1 Scheme: Central Difference (b) 1.1 Scheme: Lax-Wendroff
B Resolution = 60 B Resolution = 60
r Dt=1.5x10"° r Dt=1.5x10"°
1.08 o Fr =0.05 1.08 o Fr =0.05

ro6 |
ro4f

102/

0.98
0.96
094

002}

© 11
1.08 f
1.06 f
1.04 f

ro2Hf

Time =10, 0.15]

L L L L
0.90

Scheme: Spectral Difference
Resolution = 60 (n=3, M=20)
Dt=1.5x10"°

Fr =0.05

Time =10, 0.15]

1.06
1.04F

102

098
096
094

092}
@ 11
108 [

1.06

102 H

Time =10, 0.15]

L L L L
0.90

104 /

\ /

Scheme: Spectral Difference
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Figure 5.The water depth computed by using0 grid points with &) central differencecheme;(b) Lax
Wendroffscheme;(c) 3rd-order spectral differencechemeand (d) 4thorder spectral difference scheme. The same

number of solution points (spatial resolution) are used for all schemes. Thstéimiss chosen smaé eliminate
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Figure 6. The water depth computed by using§20grid points with (a) central differenceheme;(b) Lax
Wendroffscheme; (c) 3rd-order spectral differencechemeand (d) 4thorder spectral difference scheme. The same
number of solution points (spatial resolution) are used for all schemes. Thstéimis chosen small to eliminate
temporal discretization errordNumeical dispersion and dissipation errors for (a) and évp quite huge
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(CY 11 - Scheme: Central Difference (b) 1.1 - Scheme: Lax-Wendroff
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Figure 7. The water depth computed by using40grid points with (a) central differenceheme;(b) Lax
Wendroffscheme;(c) 3rd-order spectral differencechemeand (d) 4thorder spectral difference scheme. The same
number of solution points (spatial resolution) are used for all schemes. Thstéimis chosen small to eliminate
temporal discretization erroréNumerical dispersion and dissipation errors fhe cawentional secondrder
schemega) and (b) arestill quite hugeeven if the resolution is selected as enoughabRy10 solution points
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Figure 8.Simulation of water drop by using 3atder spectral difference method.
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