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ABSTRACT 

The transition temperature of the gap functions of two irreducible representations are very close to each other, but it 

is not possible to consider them independently. We have to extend the Ginsburg-landau free energy to both 

representations, including also coupling terms between the order parameters  

 

1. INTRODUCTION 

The transition temperatures of the gap functions of two irreducible representations are very close to each other, it is 

not possible to consider them independently. We have to extend the Ginsburg-Landau free energy to both 

representation, including also coupling terms between the order parameters, where  and  are real 

coefficients that are material dependent. The coefficients of the second-order terms are  

 
A general analysis of the phase transitions for all possible values of the coefficients is rather complicated in this 

system and even numerically hard to handle, since a large number of local minima of f make the search for the 

global minimum rather difficult. Therefore, we restrict ourselves to some typical cases which allow simple analytic 

argumentation. The superconducting states of  representation are determined by the relation between  and . 

The different types of state are separated by lines in the   plane. However, if we include coupling terms to 

other representation, these lines are in general modified and the regions close to them are not at all simple to 

analyse. To avoid such complications 

    (1) 

The coupling terms  can be derived again by applying the conditions that   is invariant under all symmetry 

transformations. The procedure is analogous to earlier cases. No second-order coupling terms exist, since the 

decomposition of  never leads to scalar terms  components. The next higher order is four, where we have to 

decompose four products 

 

 

 

 
The asterisks again denote the complex conjugate order parameter basis. Note that in these combinations the 

invariance under time reversal and , gauge transformation is satisfied. A complete list of all terms of all 

combinations of representations in the cubic point group can be found in Sigrist and Rice (1989) and for other point 

groups in Sahu, Lagner, and George (1988). 

 

2. THEORETICAL CONSIDERATIONS AND CALCULATIONS 

 It is convenient for further analysis to write the complete free energy in the parameterization 

and , so that we obtain the free energy density. 
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           (3) 

We concentrate below on regions far from any original borderline in the  diagram. As a first example, let 

us consider the case  and . With the assumptions , the stable 

superconducting state immediately below the onset of superconducting at  is clearly a single representation  

state, 

        (4) 

which is threefold degenerate with the symmetry . This state is generally not stable for all lower 

temperatures. For example, an additional second order (continuous) transition can occur at certain lower 

temperature, say , leading to a combined representation (CR) state where the  order parameter also becomes 

finite, 

 

 

        (5) 

with . The transition point  is determined as the temperature where  vanishes in these 

equations. This corresponds to the zero of the effective second-order term of  obtained in  by inserting  from 

equation (4) 

          (6) 

with  

The transition is defined for , and  is enhanced compared with  if  is “attractive” and 

suppressed if  is repulsive (>0). Obviously, at this transition the point group symmetry is broken, and for 

 even time-reversal symmetry is lost 

 

A further transition is possible to the  state of , 

   ,        (7) 

with the transition point 

          (8) 
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with   

determined by the zero of the numerator of  in equation (5). The transition can take place only under the 

assumption . In that case the coupling between the two superconducting order parameters is 

repulsive, and because of  the  order parameter is able to suppress the  order parameter. The 

CR state has the existence condition  which can also be expressed as . If all these 

conditions are fulfilled, we find three consecutive second-order transition normal state 

. 

 In the case , for which the CR state cannot exist a direct transition can take place between the 

 and the  states. Generally this transition is discontinuous, a first-order transition. The transition 

temperature is defined as the point where the free energies of both  are equal. 

       (9) 

For a physical solution  the condition  is required. Then it leads to a transition 

series normal state . 

In fig 1(a)-1(d), the qualitative phase diagram of the transition is drawn for varying Q{figs 1(a) and 1(b) and varying 

 fig (c) and 1(d)}. Regions where  state is stable for all temperature below  can also be found 

in this phase diagram. Note that an examination of the opposite case  leads to completely analogous 

conclusion 

 

 
 

 

 
 

Figure 1(a-d). Phase diagrams of additional phase transitions in the Ginzburg Landau theory combining the two 

representation  and : T versus the coupling constant Q for (a)  and (b) ; T 

versus the parameter  for (c)  and (d) . 

 

(a) (b) 

(c) (d) 
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In this example, the conditions  and  have been chosen so that only coupling terms are 

involved which contain the two order parameters in the same order. The term with the coefficient  which is linear 

in the  order parameter and in the third-order  order parameter, gives no contribution, since it requires that all 

three components of the  order parameter be finite, which is energetically rather unfavourable in this parameter 

range. To see the mode of operation of this type of coupling terms (unequal, order coupling), we consider the case 

[also far from the borderlines in the  phase diagram, but additionally  ], 

which leads to a state with  by minimization of . Making use of this form of 

the  order parameter, we can write he free-energy density equation  as  

 

 

 

   (10) 

where we set . We assume for our discussion that the form of this  order parameter is 

not changed for any temperature. For  we would expect that, in analogy with the former example 

immediately below  the state would appear with 

         (11) 

However, this is prohibited by the  term, which leads to an admixture of the  order parameter even if  is very 

small compared with . So we find for  close to  

   ,      (12) 

with the relative phase 

  

The component increase respectively to , i.e., a “driven” order parameter. This CR state conserves 

time – reversal symmetry and is fourfold degenerate . According to the conditions for an admixture of 

another representation mentioned there, the actual  state can mix with the  representation, since it has the 

symmetry , compatible with . The CR state maintains the symmetry of the originaly classified state 

(Monien et al. 1986, Wojcanowski and Wolfle, 1986) 

 

3. RESULTS AND DISCUSSION 

For lower temperatures an additional second-order phase transition can appear. The only symmetry that can broken 

in our restricted free energy is time reversal symmetry, by a change of the relative phase .Obviously, this 

is favourable only if >0, since both  and  minimize the  term for . Differentiating 

the free energy with respect to the relative phase, we obtain the extremum condition 

     (13) 

The expression in the brackets gives a temperature dependent solution for  only if . 

Thus a continuous transition from a state with  or  takes place at the temperature with  with 

. Obviously, for  no such transition is possible. Turning to the opposite case, 

 we obtain immediately below  the SR  state (equation 7). This leads to an effective free energy for 

 which contains, in addition to even order terms, a third-order term of the form 
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         14 

This term can produce an instability to a CR state through a first-order transition if the coefficients in the free energy 

satisfy the relation 

        15 

Otherwise the transition is continuous. This condition can be derived by the minimization of the free energy with 

repeat to  for a given  at the transition point or the continuous transition from the SR  to the CR 

 state . If a finite  minimizes the free energy, then a first-order 

transition has already taken place above this second – order transition point. The symmetry of the CR state is 

 for  and  for  in the latter case there is an additional continuous phase 

transition possible to the time reversal conserving, state according to (equation 13), but only if the first additional 

transition was of second order (equation 15) is not satisfied. As in the former example, a series of three continuous 

transitions is possible here. A more detailed discussion of this example has been given by Lukjanchak and Minreev 

(1989). 

 

4. CONCLUSION 

Finally, we should like to mention that in general the treatment of first-order transition in a multi-component Landau 

theory is not simple. There is no obvious relation between the high and the low temperature states like the group – 

theoretical arguments available for second – order phase transitions. The search for the global minimum in a high – 

dimensional order – parameter space is then more or less a matter of trial and error, whether one uses analytical or 

numerical methods 
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