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ABSTRACT 

In this paper, the probabilistic linear programming model with random objective function and deterministic structural 

constraints- is transformed into an equivalent deterministic model assuming that some or all coefficients in objective 

function are independent random parameters and follow the generalized exponential distribution GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗). 

Firstly, the moment generating function (MGF), expectation, and variance of GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) are derived through 

theorem (1). This theorem gives the general case of what presented by Gupta and Kundu. Secondly, an equivalent 

deterministic model is introduced using the expected value (E- model) criterion and minimum variance (v-model) 

criterion. Finally, a numerical example is introduced to illustrate the transformation from probabilistic into equivalent 

deterministic model. 
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1. INTRODUCTION 

Many studies presented different criteria for converting a probabilistic objective function into an equivalent 

deterministic one assuming different probability distributions, the most frequently used criteria are those introduced 

by Charnes and Cooper [1] who introduced three criteria: the expected value criterion (E- model), minimum variance 

criterion (V-model), and maximum probability criterion (P-model) for converting a probabilistic objective function 

into an equivalent deterministic one. Many researchers manipulated probabilistic objective functions based on these 

criteria assuming different distributions. For instance, Biswal et al [10] used the expected value criterion (E-model) in 

order to obtain the equivalent deterministic objective function assuming that the coefficients of decision variables in 

the objective function are independent random variables that follow a single parameter exponential distribution. 

Acharaya and Biswal [17] used the E-model assuming that the coefficients of decision variables in the objective 

function are independent random variables that follow the normal distribution. Also, Turgut and Murat [13] used the 

expected value criterion and the variance criterion assuming that the parameters- in a multi-objective model, take 

discrete values with different probabilities. Ismail et al [8] presented an equivalent deterministic model to the 

probabilistic programming model when the parameters of the objective function are independent random variables 

distributed as the two-parameter Weibull distribution using the E-model criterion.     

Gupta and Kundu [16] introduced the Generalized Exponential Distribution GE(𝛼, 𝜆, 𝜇) which is considered the 

general case of both one-parameter and two-parameter exponential distributions. the Generalized Exponential 

Distribution has many advantages and preferable characteristics compared to other non-negative distributions, it is 

considered more flexible than the gamma and chi-square distributions because its shape parameter can take integer or 

non-integer values. Besides; both cumulative function and inverse cumulative function of the GE(𝛼, 𝜆, 𝜇)  are in 

closed-form [14]. Also, the GE(𝛼, 𝜆, 𝜇) has shown efficiency in many applications such as in forecasting precipitation 

records [9]. In estimating the average life of power system equipment [6], As well as checking the performance of 

healing models [12]. 

 

Many studies used the GE(𝛼, 𝜆, 𝜇) in the framework of probabilistic programming. El-Dash [2] introduced the inverse 

cumulative function of the GE(𝛼, 𝜆, 𝜇), and provided the equivalent deterministic model of the probabilistic model 

using the chance constrained programming technique when some of the right-hand side (RHS) parameters, or when 

one of the left-hand side (LHS) parameters of the constraints are distributed as GE(𝛼, 𝜆, 𝜇), and  the model is solved 

using the simplex method. El-Dash and Hafez [4] have proposed an iterative approach to obtain the equivalent 

deterministic model of the probabilistic model when the RHS parameters of the constraints are independent random 

variables that follow the GE(𝛼𝑗 , 𝜆𝑗, 𝜇𝑗) in the case of joint constraints. El-Dash [3] presented a proposed method for 

transforming the probabilistic linear goal programming model to an equivalent deterministic model when some or all 



IJRRAS 46 (1) ● Jan-Mar. 2021 El-Khabeary et al. ● Stochastic Objective Function of LP Problem 

 

 
 

16 

 

of the parameters of the RHS of the constraints are random variables that follow the GE(𝛼𝑗, 𝜆𝑗 , 𝜇𝑗). This method 

provides the best compromise solution to the problem. El-Khabeary et al. [7] have proposed an equivalent 

deterministic model of the probabilistic model when two of LHS parameters of constraints are independent random 

variables that follow the bivariate GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗). 

 

In this paper we are interested in transforming a probabilistic programming model into an equivalent deterministic 

one when some or all of the parameters of the objective function are independent GE(𝛼𝑗, 𝜆𝑗 , 𝜇𝑗) random parameters. 

The E-model and V-model will be used in this transformation. Gupta and Kundu [16] derived the moment generating 

function, expectation, and variance of GE(𝛼𝑗) distribution, then in 2001 they derived the previous functions for 

GE(𝛼𝑗 , 𝜆𝑗) distribution.  

  

Therefore; In this paper, firstly; the moment generating function, expectation, and variance of GE(𝛼𝑗, 𝜆𝑗 , 𝜇𝑗) are 

derived. Secondly; the derived functions are used in constructing both the expected value (E- model) criterion and the 

minimum variance (v-model) criterion, in order to convert a probabilistic objective function with some random 

parameters following the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) to an equivalent deterministic function. 

  

2. THE MOMENT GENERATING FUNCTION OF GE(𝜶𝒋, 𝝀𝒋, 𝝁𝒋). 

In this section, we present the equivalent deterministic model for a probabilistic linear model assuming that some or 

all coefficients 𝑐𝑗̃ in the objective function are random and independently distributed as GE(𝛼𝑗, 𝜆𝑗 , 𝜇𝑗), 𝑗 = 1, … , 𝑛, 

and the structural constraints are linear and deterministic. Now; let:  

 

Min. z̃ = ∑ 𝑐𝑗̃xj
𝑛
j=1                                                                                                                         (2.1)  

𝑆. 𝑇                           ∑ 𝑎𝑖𝑗xj  
n
j=1 ≤  𝑏𝑖              ; 𝑖 = 1, 2, … , 𝑚                                                   (2.2) 

                                                       𝑥𝑗 ≥   0              ;𝑗 = 1, 2, … , 𝑛                                                   (2.3) 

     Where; 𝑥𝑗;  𝑗 = 1, 2, … , 𝑛. are the decision variables, 𝑐𝑗̃;  𝑗 =  1, … , 𝑛 are independent random parameters following 

GE(𝛼𝑗, 𝜆𝑗 , 𝜇𝑗), a𝑖𝑗 is the 𝑗𝑡ℎ deterministic L.H.S coefficient of the 𝑖𝑡ℎ constraint, and 𝑏𝑖 is the deterministic R.H.S 

parameter of the 𝑖𝑡ℎ constraint .  

     For model (2.1)-(2.3), we assume that the 𝑐𝑗̃′𝑠 are independent random parameters and follow the 

GE((𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗), 𝑗 = 1, … , 𝑛. In order to obtain the equivalent deterministic objective function of (2.1) based on the E-

model or the V-model, it is required to find at first the expectation, and variance as introduced in theorem (1), where 

the PDF of  𝑐𝑗̃ is given by: 

𝑓(𝑐𝑗̃ )= 𝛼𝑗𝜆𝑗(1 − 𝑒−𝜆𝑗(𝑐𝑗̃−𝜇𝑗))𝛼𝑖𝑗−1 𝑒−𝜆𝑗(𝑐𝑗̃−𝜇𝑗);  𝑐𝑗̃˃ 𝜇𝑗 ; 𝛼𝑗, 𝜆𝑗 , 𝜇𝑗˃ 0 , 𝑗 = 1, … , 𝑛                           (2.4) 

 

Theorem (1). Consider the random variables 𝑐𝑗̃ , 𝑗 = 1, … , 𝑛   in (2.1) with density function 𝑓(𝑐𝑗̃ ) defined in (2.4), 

then: 

1- For 𝑐𝑗̃ , 𝑗 = 1, … , 𝑛 

i. The MGF of 𝑐𝑗̃ of the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) is 

𝑀𝑐𝑗̃
(𝑡)  =  𝛼𝑗𝑒𝑡μ𝑗  B(𝛼𝑗 , 1 −

𝑡

𝜆𝑗
)  =

𝑒
𝑡μ𝑗𝛼𝑗𝛤(𝛼𝑗)𝛤(1− 

𝑡

𝜆𝑗
)

𝛤(𝛼𝑗− 
𝑡

𝜆𝑗
+1)

                                                         (2.5) 

ii. expectation of 𝑐𝑗̃ of the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) is 

E(𝑐𝑗̃) = μ𝑗 +
1

𝜆𝑗
[𝛹(𝛼𝑗 + 1) − 𝛹(1)]                                                                                (2.6) 

iii. expectation of 𝑐𝑗̃ of the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) is 

V(𝑐𝑗̃) =  
1

𝜆𝑗
2 [𝛹 ˊ(1) − 𝛹 ˊ(𝛼𝑗 + 1)]                                                                                        (2.7)   

Where: B (.,.) Represents the Beta function, Γ (.) Represents the Gamma function, Ψ(𝛼𝑗) represents the digamma 

function, and 𝛹 ˊ(𝛼𝑗) represents the derivative of the digamma function [5]. 

2- the equivalent deterministic objective function of (2.1), according to E- model criterion and V-model 

criterion, respectively, are as follows: 

Min. z̃ = E(z̃)= ∑ xj
n
j=1  [μ𝑗 +

1

𝜆𝑗
[𝛹(𝛼𝑗 + 1) − 𝛹(1)]]                                                                    (2.8) 

Min. z̃ = V(z̃)= ∑ xj
2𝑛

j=1  [
1

𝜆2 [𝛹 ˊ(1) − 𝛹 ˊ(𝛼 + 1)]]                                                                          (2.9) 
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Proof: firstly, since the MGF of the random variable 𝑐𝑗̃ takes the following form: 

𝑀𝑐𝑗̃
(𝑡) = 𝐸(𝑒𝑡𝑐𝑗̃) = ∫ 𝑒𝑡𝑐𝑗̃  𝛼𝑗𝜆𝑗(1 − 𝑒−𝜆𝑗(𝑐𝑗̃−μ𝑗))𝛼𝑗−1 𝑒−𝜆𝑗(𝑐𝑗̃−μ𝑗) 𝑑𝑐𝑗̃ 

∞

μ𝑗
                                        (2.10) 

by using the substitution technique, let: 

  y = 𝑒−𝜆𝑗(𝑐𝑗̃−μ𝑗)                                  ; ∴  𝑐𝑗̃= μ𝑗 −
 ln (𝑦)

𝜆𝑗
                                                               (2.11) 

𝑑𝑦

𝑑𝑐𝑗̃
= −𝜆𝑗𝑒−𝜆𝑗(𝑐𝑗̃−μ𝑗) = −𝜆𝑗𝑦             ; ∴ d𝑐𝑗̃ = 

𝑑𝑦

−𝜆𝑗𝑦
                                                                       (2.12) 

From (2.11)- (2.12), If 𝑐𝑗̃ → ∞  then y → 0, and if 𝑐𝑗̃ → μ𝑗  then y → 1 .Thus, the mgf in (2.10) can be rewritten as 

follows: 

𝑀𝑐𝑗̃
(𝑡) = 𝑒𝑡μ𝑗𝛼𝑗 ∫  𝑒

−t 
ln(𝑦)

𝜆𝑗  (1 − 𝑦)𝛼𝑗−1 𝑑𝑦 =  𝑒𝑡μ𝑗𝛼𝑗  ∫  𝑦
−t

𝜆𝑗
 
 (1 − 𝑦)𝛼𝑗−1 𝑑𝑦

1

0

1

0
                          (2.13) 

The previous integral represents the beta function, and it can be placed in the form of a gamma function (because it is 

easier to use it later to find expectation and variance of 𝑐𝑗̃) as follows: 

▪ 𝑀𝑐𝑗̃
(𝑡) = 𝛼𝑗𝑒𝑡μ𝑗  B (𝛼𝑗, 1 −

t

𝜆𝑗
 ) =

𝑒
𝑡μ𝑗𝛼𝑗𝛤(𝛼𝑗)𝛤(1− 

t

𝜆𝑗
 )

𝛤(𝛼𝑗− 
t

𝜆𝑗
 +1)

                  

which is the MGF of GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗)  as indicated in equation (2.5). 

 

Secondly, to find the expectation and variance of the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗)  distribution using the mgf in (2.5), the digamma 

function 𝛹(𝛼𝑗) as well as its derivative 𝛹 ˊ(𝛼𝑗) will be used. Those functions take the following form [5]. 

𝛹(𝛼𝑗) =
𝑑

𝑑𝛼𝑗
𝑙𝑛 (𝛤(𝛼𝑗)) = − 𝑎 −

1

𝛼𝑗
+ ∑

1

𝑘

𝛼𝑗

𝑘=1                                                                              (2.14) 

𝛹 ˊ(𝛼𝑗) = ∑
1

(𝑛+𝛼𝑗)
2

∞
𝑛=0      ; 𝛼𝑗 > 1                                                                                                (2.15) 

 

Where: a Represents the Euler's Constant and takes the following approximate value: 

𝑎 = − ∫ 𝑒−𝑐𝑗̃ ln 𝑐𝑗̃  𝑑𝑐𝑗̃

∞

0

= lim
𝑛→∞

(1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
− ln 𝑛) 

    = 0.57721566490153286060… ≅ 0.5772                                                                                (2.16) 

 

1) Expectation E(𝑐𝑗̃) 

     By taking the logarithm of the natural basis of the MGF (Ln MGF) in (2.5), we will obtain the following form : 

𝜑(𝑡) = 𝐿𝑛𝑀𝑐𝑗̃
(𝑡) = 𝐿𝑛 

𝑒
𝑡μ𝑗  𝛼𝑗𝛤(𝛼𝑗)𝛤(1−

𝑡

𝜆𝑗
)

𝛤(𝛼𝑗−
𝑡

𝜆𝑗
+1)

                                                                   

       = 𝐿𝑛𝑒𝑡μ𝑗 + 𝐿𝑛𝛼𝑗 +  𝐿𝑛 𝛤(𝛼𝑗 + 1) + 𝐿𝑛 𝛤 (1 −
𝑡

𝜆𝑗
) − 𝐿𝑛 𝛤(𝛼𝑗 −

𝑡

𝜆𝑗
+ 1)                         (2.17) 

By taking the first derivative of (2.17): 
𝑑

𝑑𝑡
𝜑(𝑡)=  

𝑑

𝑑𝑡
 {𝐿𝑛 𝑒𝑡μ𝑗 + 𝐿𝑛𝛼𝑗 + 𝐿𝑛 𝛤(𝛼𝑗 + 1) + 𝐿𝑛 𝛤 (1 −

𝑡

𝜆𝑗
) − 𝐿𝑛 𝛤(𝛼𝑗 −

𝑡

𝜆𝑗
+ 1)}            (2.18) 

𝑑

𝑑𝑡
 𝐿𝑛 𝑒𝑡μ𝑗   = μ𝑗;      

𝑑

𝑑𝑡
(𝐿𝑛𝛼𝑗 + 𝐿𝑛 𝛤(𝛼𝑗 + 1)) = 0                                                                  (2.19) 

𝑑

𝑑𝑡
𝐿𝑛 𝛤 (1 −

𝑡

𝜆𝑗
) =  

𝛤ˊ(1− 
𝑡

𝜆𝑗
)

 𝛤(1− 
𝑡

𝜆𝑗
)

(
−1

𝜆𝑗
) = Ψ (1 −

𝑡

𝜆𝑗
) (

−1

𝜆𝑗
)                                                                    (2.20)  

Where: 𝛤ˊ(. ) Represents the derivative of gamma function, and 

  
𝑑

𝑑𝑡
𝐿𝑛 𝛤(𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) =  

𝛤ˊ(𝛼𝑗 − 
𝑡

𝜆𝑗
 +1)

 𝛤 ( 𝛼𝑗 − 
𝑡

𝜆𝑗
 +1)

(
−1

𝜆𝑗
) = Ψ (𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) (

−1

𝜆𝑗
)                                            (2.21) 

Thus, by substituting (2.19) - (2.21) in (2.18), the first derivative in (2.18) becomes as follows: 
𝑑

𝑑𝑡
𝜑(𝑡) =  μ𝑗 + Ψ (1 −

𝑡

𝜆𝑗
) (

−1

𝜆𝑗
) − Ψ (𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) (

−1

𝜆𝑗
)                                                            (2.22) 

𝑑

𝑑𝑡
𝜑(𝑡) =  μ𝑗 +

1

𝜆𝑗
Ψ (𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) −

1

𝜆𝑗
 Ψ (1 −

𝑡

𝜆𝑗
)                                                                    (2.23) 

After substituting t = 0 into (2.23), we obtain the expectation as follows: 
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▪ E(𝑐𝑗̃) = μ𝑗 + (
1

𝜆𝑗
) [Ψ(𝛼𝑗 + 1) − Ψ(1)] 

 

2) Variance V(𝑐𝑗̃) 

To find the variance, we will take the first derivative of (2.23) as follows: 
d2

dt2 𝜑(𝑡) =  
d

dt
 {μ𝑗 +

1

𝜆𝑗
Ψ (𝛼𝑗 −

t

𝜆𝑗
+ 1) −

1

𝜆𝑗
 Ψ (1 −

t

𝜆𝑗
)}                                                          (2.24)   

 

Where; 
d

dt
  μ𝑗  = 0  ; 

d

dt
 

1

𝜆𝑗
Ψ (𝛼𝑗 −

t

𝜆𝑗
+ 1) =

1

𝜆𝑗
 Ψˊ (𝛼𝑗 −

t

𝜆𝑗
+ 1) (

−1

𝜆𝑗
)                                                   (2.25) 

d

dt

1

λ
 Ψ (1 −

t

𝜆𝑗
) = 

1

𝜆𝑗
Ψˊ (1 −

t

𝜆𝑗
) (

−1

𝜆𝑗
)                                                                                           (2.26) 

Thus, by substituting (2.25)- (2.26) in (2.24),  
d2

dt2 𝜑(𝑡)  = 
1

𝜆𝑗
 𝛹 ˊ (𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) (

−1

𝜆𝑗
) − 

1

𝜆𝑗
𝛹 ˊ (1 −

𝑡

𝜆𝑗
) (

−1

𝜆𝑗
)                                                         (2.27) 

d2

dt2 𝜑(𝑡)  = 
−1

𝜆𝑗
2  𝛹 ˊ (𝛼𝑗 −

𝑡

𝜆𝑗
+ 1) + 

1

𝜆𝑗
2 𝛹 ˊ (1 −

𝑡

𝜆𝑗
)                                                                     (2.28) 

After substituting t = 0 into (2.28), the variance becomes as follows: 

▪ V(𝑐𝑗̃)= 
1

𝜆𝑗
2 [𝛹 ˊ(1) − 𝛹 ˊ(𝛼𝑗 + 1)] 

Finally, according to the E- model criterion and V-model criterion the equivalent deterministic objective function of 

probabilistic objective function in (2.1) are as follows, respectively: 

Min. z̃ = E(z̃)= ∑ xj
n
j=1  E(𝑐𝑗̃)                                                                                               (2.29) 

Min. z̃ = V(z̃)= ∑ xj
2𝑛

j=1  V(𝑐𝑗̃)                                                                                              (2.30) 

Hence, by substituting (2.6)- (2.7) in (2.29)- (2.30), we obtain the equivalent deterministic objective function of (2.1) 

as given in (2.8)- (2.9). 

 

3. SPECIAL CASES 

1) let 𝜆𝑗 = 1, μ𝑗 = 0 in (2.5)- (2-7), then:  

1) 𝑀𝑐𝑗̃
(𝑡)  =  𝛼𝑗  B(𝛼𝑗, 1 − 𝑡)  =

𝛼𝑗𝛤(𝛼𝑗)𝛤(1− 𝑡)

𝛤(𝛼𝑗− 𝑡+1)
                                                                 (3.1)  

2) E(𝑐𝑗̃) = 𝛹(𝛼𝑗 + 1) − 𝛹(1)                                                                                        (3.2) 

3) V(𝑐𝑗̃) =  𝛹 ˊ(1) − 𝛹 ˊ(𝛼𝑗 + 1)                                                                                     (3.3)   

These results are the same as the results provided by Gupta and Kundu [16] for generalized exponential distribution 

with one parameter GE(𝛼𝑗). 

(2) let μ𝑗 = 0 in (2.5)- (2-7), then: 

1) 𝑀𝑐𝑗̃
(𝑡)  =  𝛼𝑗  B(𝛼𝑗, 1 −

𝑡

𝜆𝑗
)  =

𝛼𝑗𝛤(𝛼𝑗)𝛤(1− 
𝑡

𝜆𝑗
)

𝛤(𝛼𝑗− 
𝑡

𝜆𝑗
+1)

                                                             (3.4)  

2) E(𝑐𝑗̃) =
1

𝜆𝑗
[𝛹(𝛼𝑗 + 1) − 𝛹(1)]                                                                                 (3.5) 

3) V(𝑐𝑗̃) =  
1

𝜆𝑗
2 [𝛹 ˊ(1) − 𝛹 ˊ(𝛼𝑗 + 1)]                                                                            (3.6)   

These results are the same as the result provided by Gupta and Kundu [15] for generalized exponential distribution 

with two parameters GE(𝛼𝑗 , 𝜆𝑗). 

 

4. NUMERICAL EXAMPLE 

In this section, we introduced a numerical example to illustrate the procedure of the transformation from probabilistic 

linear programming model into an equivalent deterministic model, when parameters in the objective function follow 

the GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗), and structural constraints are deterministic. Consider the following probabilistic model: 

           Min . Z̃ = c1̃x1 +  c2̃x2                                                                                            (4.1) 

S.t                          x1  − x2 ≤  2                                                                                        (4.2) 

                            2x1 + x2 ≥ 10                                                                                       (4.3) 

                           3x1 + 4x2 ≤ 24                                                                                      (4.4)  

                                   x1, x2 ≥   0                                                                                      (4.5) 
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Where; x1, x2 are decision variables, 𝑐1̃, 𝑐2̃ are independent random parameters following GE distribution with the 

following parameters 

𝑐1̃~GE(𝛼1 = 2, 𝜆1 = 1, 𝜇1 = 2) and  𝑐2̃~GE(𝛼2 = 2, 𝜆2 = 2, 𝜇2 = 3)                                   (4.6) 

      based on Theorem (1) and by substituting values of the parameters (4.6) of random variable 𝑐1̃, 𝑐2̃ in (2.8)- (2-9), 

then the equivalent deterministic objective function of (4.1) is as follows, according to: 

 

1) the E- model criterion: 

Min. z̃ = E(z̃)=  3.5 x1 + 3.75x2                                                                                             (4.7) 

Hence, the linear equivalent deterministic programming model in this case becomes (4.7) and (4.2) - (4.5), which can 

be solved by using the Simplex method, and the optimal solution is as follows: 

E( Z̃ ) = 21.5 , x1 =4, x2 =2                                                                                                    (4.8) 

2) the V-model criterion: 

Min. z̃ = V(z̃)=  1.25 x1
2 + 0.3125 x2

2
                                                                                 (4.9) 

Hence, the equivalent deterministic programming model in this case becomes (4.9) and (4.2) - (4.5), which is a 

nonlinear programming model with convex objective function that can be solved by using the quadratic programming, 

and the optimal solution is as follows: 

V( Z̃ ) = 16.85 , x1 =3.2, x2 =3.6                                                                                           (4.10) 

Thus, the summary of solutions for the probabilistic model (4.1) - (4.5) according to the two criteria is as follows: 

 

Table 1. the summary of solutions for the probabilistic model 

criterion Objective function  decision variables 

E- model E( Z̃ ) = 21.5 x1 =4, x2 = 2 

V- model V( Z̃ ) = 16.85 x1 =3.2, x2 =3.2 

It is apparent from the above table that the best solution for the probabilistic programming model results from V- 

model criterion. 

 

5. CONCLUSION 

In this paper, we obtained the moment generating function, expectation, and variance of GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗) through 

theorem (1). Then; by using it the expected value criterion (E- model) and the variance criterion (v-model), the 

equivalent deterministic model of the probabilistic programming model under the assumption that some or all  random 

parameters of the objective function follow GE(𝛼𝑗 , 𝜆𝑗, 𝜇𝑗) is presented. Also, some special cases of the properties of 

the distribution are introduced, where these cases satisfy the results provided by Gupta and Kundu (1999, 2001).  
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