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ABSTRACT 

In this article, we focus on the semi-parametric error-in-variables model with missing responses: 𝑦𝑖 = 𝜉𝑖𝛽 + 𝑔(𝑡𝑖) +
𝜖𝑖, 𝑥𝑖 = 𝜉𝑖 + 𝜇𝑖, where 𝑦𝑖  are the response variables missing at random, (𝜉𝑖 , 𝑡𝑖) are design points, 𝜉𝑖 are the potential 

variables observed with measurement errors 𝜇𝑖, the unknown slope parameter 𝛽 need to be estimate. Here we choose 

two different approaches to estimate 𝛽. Under appropriate conditions, we study the asymptotic normality for the 

proposed estimators.  
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1.  INTRODUCTION 

Consider the following semi-parametric error-in-variables(EV) model  
 

{
𝑦𝑖 = 𝜉𝑖𝛽 + 𝑔(𝑡𝑖) + 𝜖𝑖 ,
𝑥𝑖 = 𝜉𝑖 + 𝜇𝑖,

 (1.1) 

 where 𝑦𝑖  are the scalar response variables, (𝜉𝑖 , 𝑡𝑖) are design points, 𝑥𝑖 are observable random variables with 

measurement errors 𝜇𝑖, 𝐸𝜇𝑖 = 0, 𝜖𝑖 are statistical errors with 𝐸𝜖𝑖 = 0. 𝛽 ∈ 𝑅 is an unknown parameter waiting to be 

estimated. 𝑔(⋅) is a unknown function taking values in [0,1], ℎ(⋅) is a known function defined on [0,1] satisfying  
             𝜉𝑖 = ℎ(𝑡𝑖) + 𝑣𝑖 , (1.2) 

 where 𝑣𝑖 are also design points. 
Model (1.1) has been one of the important issues in statistical research. When 𝜇𝑖 ≡ 0, 𝜉𝑖 are observed exactly, 

the model (1.1) reduces to the general semi-parametric model, which was first introduced by [1]. [2] considered 

marginal generalized semi parametric partially linear models for clustered data. The extensive application of semi-

parametric model is of great significance to the development of parameter estimator and estimator efficiency. 
More and more attention has been paid to the statistical research of measurement error data. This is because 

it has appeared in many subjects, including medicine, economics and engineering. There is no doubt that the final 

results would be biased or inconsistent. When 𝑦𝑖  are complete observed and 𝑔(⋅) ≡ 0, the model (1.1) reduces to the 

usual linear EV model. [3] proposed a constrained empirical likelihood confidence region. When 𝑔(⋅) ≠ 0, the model 

(1.1) has also been studied by many scholars. [4] establish the consistency and √𝑛-normality property of the estimator 

of the finite-dimensional parameters of the model. Therefore, it is necessary to use corresponding measurement error 

model and it has been developing constantly. 
However, we often encounter incomplete data due to various reasons. Methods to deal with missing data 

have been widely studied, missing data imputation is the most popular one. Among others, one can impute a plausible 

value for each missing data, then analyze the results as if they are complete. In regression problems, commonly used 

imputation approaches include linear regression imputation by [5] nonparametric kernel regression imputation by [6] 

semi-parametric regression imputation by [7]. We here extend the methods to the estimation of 𝛽 under the model 

(1.1). We obtain two approaches to estimate 𝛽 with missing responses and study the asymptotic normality for the 

estimators. 
In this paper, investigate parameter estimates for models with fixed designs, suppose we obtain a random 

sample of incomplete data {(𝑦𝑖 , 𝛿𝑖, 𝑥𝑖 , 𝑡𝑖)} from the model (1.1), where 𝛿𝑖 is a number, 𝛿𝑖 = 0 if 𝑦𝑖  is missing, otherwise 

𝛿𝑖 = 1. We assume that 𝑦𝑖  is missing at random. This assumption is a common assumption for statistical analysis with 

missing data and is reasonable in many practical situations. 
The paper is organized as follows. In Section 2, we list some assumptions. The main results are given in 

Section 3. Some preliminary lemmas are stated in Section 4. Proof of the main results is provided in Section 5. 
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2.  ASSUMPTIONS 

In this section, we list some assumptions which will be used in the main results. Here 𝑎𝑛 = 𝑂(𝑏𝑛) means |𝑎𝑛| ≤ |𝑏𝑛|, 
𝑎𝑛 = 𝑜(𝑏𝑛) means 𝑎𝑛/𝑏𝑛 → 0 as 𝑛 → ∞, while a.s. is stand for almost sure.   

   (A0) • Let {𝜖𝑖 , 1 ≤ 𝑖 ≤ 𝑛} and {𝜇𝑖, 1 ≤ 𝑖 ≤ 𝑛} be independent random variables satisfying   
        - 𝐸𝜖𝑖 = 0, 𝐸𝜇𝑖 = 0, 𝐸𝜇𝑖

2 = Ξ𝜇
2 > 0 is known.  

        - sup𝑖𝐸|𝜖𝑖|
𝑟1 < ∞, sup𝑖𝐸|𝜇𝑖|

𝑟2 < ∞ for some 𝑟1 > 8/3, 𝑟2 > 4.  
        - {𝜖𝑖, 1 ≤ 𝑖 ≤ 𝑛} and {𝜇𝑖, 1 ≤ 𝑖 ≤ 𝑛} are independent of each other.  
 

 
(A1) • Let {𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛} in (1.2) be a sequence satisfying   
        - lim𝑛→∞𝑛−1 ∑𝑛

𝑖=1 𝑣𝑖
2 = Σ0, lim𝑛→∞𝑛−1 ∑𝑛

𝑖=1 𝛿𝑖𝑣𝑖
2 = Σ1 (0 < Σ0, Σ1 < ∞).  

        - lim𝑛→∞sup𝑛(√𝑛log𝑛)−1 ⋅ max1| ∑𝑚
𝑖=1 𝑣𝑗𝑖

| < ∞, where {𝑗1, 𝑗2, . . . , 𝑗𝑛} is a permutation of 

(1,2, . . . , 𝑛).  
        - max1|𝑣𝑖| = 𝑂(𝑛1/2log−1𝑛).  
        - max1|𝑣𝑖| = 𝑂(𝑛1/4).  
 

 
(A2) • 𝑔(⋅) and ℎ(⋅) are continuous functions satisfying the first-order Lipschitz condition on the close 

interval [0,1]. 
 
(A3) • Let 𝑊𝑛𝑗

𝑐 (𝑡𝑖) (1, 𝑗) be weight functions defined on [0, 1] and satisfy   
        - max1 ∑𝑛

𝑖=1 𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖) = 𝑂(1)  

        - max1 ∑𝑛
𝑗=1 𝛿𝑗𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝐼(|𝑡𝑖 − 𝑡𝑗| > 𝑎 ⋅ 𝑛−1/4log−1𝑛) = 𝑜(𝑛−1/4log−1𝑛) for any 𝑎 > 0.  

        - max1≤𝑖,𝑗≤𝑛𝑊𝑛𝑗
𝑐 (𝑡𝑖) = 𝑜(𝑛−1/2log−2𝑛)  

 

 
(A4) • The probability weight functions 𝑊𝑛𝑗(𝑡𝑖)  (1 ≤ 𝑖, 𝑗 ≤ 𝑛) are defined on [0,1] and satisfy   
        - max1≤𝑖≤𝑛 ∑𝑛

𝑖=1 𝑊𝑛𝑗(𝑡𝑖) = 𝑂(1).  
        - max1≤𝑖≤𝑛 ∑𝑛

𝑗=1 𝑊𝑛𝑗(𝑡𝑖)𝐼(|𝑡𝑖 − 𝑡𝑗| > 𝑎 ⋅ 𝑛−1/4log−1𝑛) = 𝑜(𝑛−1/4log−1𝑛), for any 𝑎 > 0.  

        - max1≤𝑖,𝑗1≤𝑛𝑊𝑛𝑗(𝑡𝑖) = 𝑜(𝑛−1/2log−1𝑛).  

 
Remark 2.1  Conditions (A0)-(A4) are standard regularity conditions and used commonly in the literature, see [8], 

[9] and [10]. 
 
3.  MAIN RESULTS 

For model (1.1), we want to seek the estimators of 𝛽. The most natural idea is to delete all the missing data. Thus, one 

can get model 𝛿𝑖𝑦𝑖 = 𝛿𝑖𝜉𝑖𝛽 + 𝛿𝑖𝑔(𝑡𝑖) + 𝛿𝑖𝜖𝑖. If 𝜉𝑖 can be observed, we can apply the least squares estimation(LSE) 

method to estimate the parameter 𝛽. If the parameter 𝛽 is known, using the complete data {(𝛿𝑖𝑦𝑖 , 𝛿𝑖𝑥𝑖 , 𝛿𝑖𝑡𝑖),1 ≤ 𝑖 ≤
𝑛}, we can define the estimator of 𝑔(⋅) to be  

𝑔𝑛
∗ (𝑡, 𝛽) = ∑

𝑛

𝑗=1

𝑊𝑛𝑗
𝑐 (𝑡)(𝛿𝑗𝑦𝑗 − 𝛿𝑗𝑥𝑗𝛽), 

where 𝑊𝑛𝑗
𝑐 (𝑡) are weight functions satisfying (A3). On the other hand, under this condition of the semi-parametric 

EV model, Liang et al. (1999) improved the LSE on the basis of the usual partially linear model, and employ the 

estimator of parameter 𝛽 to minimize the following formula:  

𝑆𝑆(𝛽) = ∑

𝑛

𝑖=1

𝛿𝑖{[𝑦𝑖 − 𝑥𝑖𝛽 − 𝑔𝑛
∗ (𝑡𝑖 , 𝛽)]2 − Ξ𝜇

2𝛽2} = 𝑚𝑖𝑛! 

Therefore, we can achieve the modified LSE of 𝛽 as follow:  
  

�̂�𝑐 = [∑

𝑛

𝑖=1

(𝛿𝑖�̃�𝑖
𝑐2

− 𝛿𝑖Ξ𝜇
2)]−1 ∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐�̃�𝑖

𝑐, 
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 (3.1) 
 where �̃�𝑖

𝑐 = 𝑥𝑖 − ∑𝑛
𝑗=1 𝛿𝑗𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝑥𝑗, �̃�𝑖
𝑐 = 𝑦𝑖 − ∑𝑛

𝑗=1 𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝑦𝑗. 

Apparently, the estimators �̂�𝑐 is formed without taking all sample information into consideration. Hence, in 

order to make up for the missing data, we imply an imputation method from [7], and let  
 

                                𝑈𝑖
[𝐼]

= 𝛿𝑖𝑦𝑖 + (1 − 𝛿𝑖)[𝑥𝑖�̂�𝑐 + �̂�𝑛
𝑐 (𝑡𝑖)]. (3.2) 

 Therefore, Using complete data {(𝑈𝑖
[𝐼]

, 𝑥𝑖 , 𝑡𝑖),1 ≤ 𝑖 ≤ 𝑛}, similar to (3.1), one can get the other estimators for 𝛽,  

                �̂�𝐼 = [∑𝑛
𝑖=1 (�̃�𝑖

2 − Ξ𝜇
2)]−1 ∑𝑛

𝑖=1 �̃�𝑖𝑈𝑖
[𝐼]

 (3.3) 

 where 𝑈𝑖
[𝐼]

= 𝑈𝑖
[𝐼]

− ∑𝑛
𝑗=1 𝑊𝑛𝑗(𝑡𝑖)𝑈𝑗

[𝐼]
, �̃�𝑖 = 𝑥𝑖 − ∑𝑛

𝑗=1 𝑊𝑛𝑗(𝑡𝑖)𝑥𝑗 , 𝑊𝑛𝑗(𝑡) are weight functions satisfying (A4). 

Based on the two estimators for 𝛽, we take some notations which will be used and have the following results.  
  

𝜉𝑖
𝑐 = 𝜉𝑖 − ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜉𝑗 , 𝜉𝑖 = 𝜉𝑖 − ∑

𝑛

𝑗=1

𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜉𝑗 , 𝑆𝑛

2 = ∑

𝑛

𝑖=1

𝛿𝑖(𝜉𝑖
𝑐)2, 𝑅𝑛

2 = ∑

𝑛

𝑖=1

(𝜉𝑖)
2, 

  

Σ𝑛
2 = V𝑎𝑟{∑

𝑛

𝑖=1

𝛿𝑖[(𝜉𝑖
𝑐 + 𝜇𝑖)(𝜖𝑖 − 𝜇𝑖𝛽) + Ξ𝜇

2𝛽]}, 𝑆1𝑛
2 = ∑

𝑛

𝑖=1

𝛿𝑖(�̃�𝑖
2 − Ξ𝜇

2), 𝐷𝑖𝑛 = 𝑆1𝑛
−2(1 − 𝛿𝑖)𝜉𝑖

2 

  

Σ1𝑛
2 = V𝑎𝑟{∑

𝑛

𝑖=1

𝛿𝑖[(𝜉𝑖 + 𝐷𝑖𝑛𝜉𝑖
𝑐)(𝜖𝑖 − 𝜇𝑖𝛽) + (1 + 𝐷𝑖𝑛)(𝜇𝑖𝜖𝑖 − (𝜇𝑖

2 − Ξ𝜇
2)𝛽)]} 

 
Theorem 3.1  Suppose that (A0)-(A4) are satisfied.   

    • If Σ𝑛
2 ≥ 𝐶𝑛 for all n, then 𝑆𝑛

2(�̂�𝑐 − 𝛽)/Σ𝑛 ⟶
𝒟

𝑁(0,1)   
  

Theorem 3.2  Suppose that (A0)-(A4) are satisfied.   

    •   If Σ1𝑛
2 ≥ 𝐶𝑛 for all n, then 𝑅𝑛

2(�̂�𝐼 − 𝛽)/Σ1𝑛 ⟶
𝒟

𝑁(0,1)   
  

 

 
4.  PRELIMINARY LEMMAS 

In the sequel, let 𝐶, 𝐶1, ⋯ be some finite positive constants, whose values are unimportant and may change. Now, we 

introduce several lemmas, which will be used in the proof of the main results. 
 
Lemma 4.1 (Baek ang Liang [12], Lemma 3.1)  Let 𝛼 > 2, 𝑒1, ⋯ , 𝑒𝑛 be independent random variables with 𝐸𝑒𝑖 =
0. Assume that {𝑎𝑛𝑖 , 1} is a triangular array of numbers with 𝑚𝑎𝑥1≤𝑖≤𝑛|𝑎𝑛𝑖| = 𝑂(𝑛−1/2) and ∑𝑛

𝑖=1 𝑎𝑛𝑖
2 =

𝑜(𝑛−2/𝛼𝑙𝑜𝑔−1𝑛). If 𝑠𝑢𝑝𝑖𝐸|𝑒𝑖|
𝑝 < ∞ for some 𝑝 > 2𝛼/(𝛼 − 1). Then  

 ∑𝑛
𝑖=1 𝑎𝑛𝑖𝑒𝑖 = 𝑜(𝑛−1/𝛼) a. s. 

 
Lemma 4.2 (Hardle et al. [8], Lemma A.3)  Let 𝑉1, ⋯ , 𝑉𝑛  be independent random variables with 𝐸𝑉𝑖 = 0, finite 

variances and 𝑠𝑢𝑝1≤𝑖≤𝑛𝐸|𝑉𝑗|𝑟 ≤ 𝐶 < ∞ (𝑟 > 2). Assume that {𝑎𝑘𝑖 , 𝑘, 𝑖 = 1, … , 𝑛} is a sequence of numbers such 

that 𝑠𝑢𝑝1≤𝑖,𝑘≤𝑛|𝑎𝑘𝑖| = 𝑂(𝑛−𝑝1) for some 0 < 𝑝1 < 1 and ∑𝑛
𝑗=1 𝑎𝑗𝑖 = 𝑂(𝑛𝑝2) for 𝑝2𝑚𝑎𝑥(0,2/𝑟 − 𝑝1). Then  

 max
1≤𝑖≤𝑛

| ∑𝑛
𝑘=1 𝑎𝑘𝑖𝑉𝑘| = 𝑂(𝑛−𝑠log𝑛) a. s.    𝑓𝑜𝑟 𝑠 = (𝑝1 − 𝑝2)/2. 

 
Lemma 4.3    

 (a)    • Let �̃�𝑖 = 𝐴(𝑡𝑖) − ∑𝑛
𝑗=1 𝑊𝑛𝑗(𝑡𝑖)𝐴(𝑡𝑗), where 𝐴(⋅) = 𝑔(⋅) or ℎ(⋅). Let �̃�𝑖

𝑐 = 𝐴(𝑡𝑖) −

∑𝑛
𝑗=1 𝛿𝑗𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝐴(𝑡𝑗), where 𝐴(⋅) = 𝑔(⋅) or ℎ(⋅). Then, (A0)-(A4) imply that max1≤𝑖≤𝑛|�̃�𝑖| = 𝑜(𝑛−1/4) and 

max1≤𝑖≤𝑛|�̃�𝑖
𝑐| = 𝑜(𝑛−1/4).  

 (b)   • (A0)-(A4) imply that 𝑛−1 ∑𝑛
𝑖=1 𝜉𝑖

2 → Σ0, ∑𝑛
𝑖=1 |𝜉𝑖|  ≤ C1𝑛, 𝑛−1 ∑𝑛

𝑖=1 𝛿𝑖(𝜉𝑖
𝑐)2 → Σ1 and 

∑𝑛
𝑖=1 |𝛿𝑖𝜉𝑖

𝑐| ≤ C2𝑛.  
 (c)  • (A0), (A1)(i)(ii)(iii), (A2)-(A4) imply that max1|𝜉𝑖| = 𝑂(𝑛1/2log−1𝑛) and 
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max1≤𝑖≤𝑛|𝜉𝑖
𝑐| = 𝑂(𝑛1/2log−1𝑛).  

 (d)  • (A0), (A1)(i)(ii)(iv), (A2)-(A4) imply that max1≤𝑖≤𝑛|𝜉𝑖| = 𝑂(𝑛1/4) and max1|𝜉𝑖
𝑐| = 𝑂(𝑛1/4).  

  

 
Lemma 4.4  Suppose that (A0)-(A4) are satisfied. Then one can deduce that  

 max
1≤𝑖≤𝑛

|�̂�𝑛
𝑐 (𝑡𝑖) − 𝑔(𝑡𝑖)| = 𝑜(𝑛−

1

4) a. s.  

 
5.  PROOF OF MAIN RESULTS  

  Firstly, we introduce some notations, which will be used in the proofs below.  
  

�̃�𝑖
𝑐 = 𝜇𝑖 − ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗 , �̃�𝑖 = 𝜇𝑖 − ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝜇𝑗 ,   

  

�̃�𝑖
𝑐 = 𝑔(𝑡𝑖) − ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝑔(𝑡𝑗), �̃�𝑖 = 𝑔(𝑡𝑖) − ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝑔(𝑡𝑗), 

  

𝜖�̃�
𝑐 = 𝜖𝑖 − ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜖𝑗 , 𝜖�̃� = 𝜖𝑖 − ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝜖𝑗 , 𝑆2𝑛
2 = ∑

𝑛

𝑖=1

(�̃�𝑖
2 − Ξ𝜇

2),   

 

Proof of Theorem 3.1. From (1), one can write that  

�̂�𝑐 − 𝛽 = 𝑆1𝑛
−2{∑

𝑛

𝑖=1

[𝛿𝑖(𝜉𝑖
𝑐 + �̃�𝑖

𝑐)(𝜖�̃�
𝑐 − �̃�𝑖

𝑐𝛽) + 𝛿𝑖Ξ𝜇
2𝛽] + ∑

𝑛

𝑖=1

𝛿𝑖𝜉𝑖
𝑐�̃�𝑖

𝑐 + ∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐�̃�𝑖

𝑐} 

  

= 𝑆1𝑛
−2{∑

𝑛

𝑖=1

𝛿𝑖[(𝜉𝑖
𝑐 + 𝜇𝑖)(𝜖𝑖 − 𝜇𝑖𝛽) + Ξ𝜇

2𝛽] + ∑

𝑛

𝑖=1

𝛿𝑖𝜉𝑖
𝑐�̃�𝑖

𝑐 + ∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐�̃�𝑖

𝑐 

  

+ ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝜉𝑖
𝑐𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝜇𝑗𝛽 − ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜉𝑖

𝑐𝜖𝑗 − ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝜖𝑖 

  

− ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑖𝜖𝑗 + 2 ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑖𝜇𝑗𝛽 

  

+ ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

∑

𝑛

𝑘=1

𝛿𝑖𝛿𝑗𝛿𝑘𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝑊𝑛𝑘

𝑐 (𝑡𝑖)𝜇𝑗𝜖𝑘 − ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

∑

𝑛

𝑘=1

𝛿𝑖𝛿𝑗𝛿𝑘𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝑊𝑛𝑘

𝑐 (𝑡𝑖)𝜇𝑗𝜇𝑘𝛽} 

  

              : = 𝑆1𝑛
−2 ∑10

𝑙=1 𝐴𝑙𝑛 .  (5.1) 

  

Thus, to prove 𝑆𝑛
2(�̂�𝑐 − 𝛽)/Σ𝑛 →

𝒟
𝑁(0,1). By Lemma 4.1 - Lemma 4.3 and A(0), one can get 𝑆1𝑛

2 /𝑆𝑛
2 ⟶

𝑎.𝑠.
1, so we 

only need to verify that ∑10
𝑙=1 𝐴𝑙𝑛/Σ𝑛 →

𝒟
𝑁(0,1). 

 

Step 1. We verify that 𝐴𝑙𝑛/Σ𝑛 →
𝑃

0 for 𝑙 = 2,3, ⋯ ,10  with Σ𝑛
2  . We only need to verify that 𝐴𝑙𝑛 = 𝑜𝑝(𝑛1/2) for 𝑙 =

2,3, ⋯ ,10 . From the conditions of Theorem 3.1 , Lemma 4.3, one can achieve that 
 
  

|𝐴2𝑛| = | ∑

𝑛

𝑖=1

𝛿𝑖𝜉𝑖
𝑐�̃�𝑖

𝑐| ≤ 4| ∑

𝑛

𝑖=1

𝛿𝑖𝜉𝑖
𝑐�̃�𝑖

𝑐| = | ∑

𝑛

𝑖=1

𝛿𝑖ℎ̃𝑖
𝑐�̃�𝑖

𝑐 + ∑

𝑛

𝑖=1

𝛿𝑖𝑣𝑖�̃�𝑖
𝑐 − ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝑣𝑗�̃�𝑖

𝑐| 
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≤ 𝐶𝑛|�̃�𝑖
𝑐||ℎ̃𝑖

𝑐| + max
1

∑

𝑛

𝑖=1

𝑊𝑛𝑗
𝑐 (𝑡𝑖)max

1
| ∑

𝑚

𝑘=1

𝑣𝑗𝑘
|max

1
|�̃�𝑖

𝑐| 

 +𝐶𝑛 ⋅ max
1

|�̃�𝑖
𝑐||𝛿𝑖|max

1
| ∑𝑚

𝑖=1 𝑣𝑘𝑖
| = 𝑜(𝑛

1

2) a. s.  

  

𝐸(𝐴3𝑛)2 = 𝐸(∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐�̃�𝑖

𝑐)2 ≤ 𝐶 ⋅ {𝐸(∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐𝜇𝑖)

2 + 𝐸[∑

𝑛

𝑖=1

𝛿𝑖�̃�𝑖
𝑐 ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗(𝑡𝑖)𝜇𝑗]2} 

  

≤ 𝐶 ⋅ {∑

𝑛

𝑖=1

(�̃�𝑖
𝑐)2 + ∑

𝑛

𝑗=1

𝛿𝑗
2[∑

𝑛

𝑖=1

𝑊𝑛𝑗(𝑡𝑖)�̃�𝑖
𝑐]2} = 𝑜(𝑛

1
2) 

 
 

which yields that 𝐴3𝑛 = 𝑜𝑝(𝑛1/2). On the other hand,note that,  
  

                            𝐴4𝑛 = ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝜉𝑖
𝑐𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝜇𝑗𝛽 

 = ∑𝑛
𝑖=1 𝛿𝑖ℎ̃𝑖

𝑐 ∑𝑛
𝑗=1 𝛿𝑗𝑊𝑛𝑗

𝑐 (𝑡𝑖)𝜇𝑗𝛽 + ∑𝑛
𝑖=1 𝛿𝑖𝑣𝑖 ∑𝑛

𝑗=1 𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝛽 

 − ∑𝑛
𝑖=1 𝛿𝑖 ∑𝑛

𝑠=1 𝑊𝑛𝑠
𝑐 (𝑡𝑖)𝛿𝑠𝑣𝑠 ∑𝑛

𝑗=1 𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝛽 

                                 ∶= 𝐷1𝑛 + 𝐷2𝑛 + 𝐷3𝑛 
 

According to the condition that Σ𝑛
2  ,we can achieve that  

𝐸(𝐷1𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

𝛿𝑖ℎ̃𝑖
𝑐 ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝛽]2 ≤ 𝐶 ⋅ ∑

𝑛

𝑗=1

𝐸[∑

𝑛

𝑖=1

𝛿𝑖ℎ̃𝑖
𝑐𝛿𝑗𝑊𝑛𝑗

𝑐 (𝑡𝑖)]2 

 ≤ 𝐶𝑛 ⋅ [∑

𝑛

𝑖=1

𝛿𝑖ℎ̃𝑖
𝑐𝑊𝑛𝑗

𝑐 (𝑡𝑖)]2 = 𝑜(𝑛
1
2) 

𝐸(𝐷2𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

𝛿𝑖𝑣𝑖 ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝛽]2 ≤ 𝐶 ⋅ ∑

𝑛

𝑗=1

[𝛿𝑗 ∑

𝑛

𝑖=1

𝛿𝑖𝑣𝑖𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝛽]2 

 ≤ 𝐶𝑛 ⋅ {max
1,𝑗

𝑊𝑛𝑗
𝑐 (𝑡𝑖) ⋅ max

1≤𝑖≤𝑛
| ∑

𝑚

𝑘=1

𝑣𝑘𝑖
|2} = 𝑜(𝑛) 

|𝐷3𝑛| = | ∑

𝑛

𝑖=1

𝛿𝑖 ∑

𝑚

𝑠=1

𝑊𝑛𝑠(𝑡𝑖)𝛿𝑠𝑣𝑠 ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝛽| 

 ≤ 𝐶 ⋅ max
1≤𝑖≤𝑛

| ∑

𝑚

𝑠=1

𝑣𝑘𝑠
| ⋅ max

1≤𝑖≤𝑛
| ∑

𝑛

𝑖=1

𝛿𝑖𝑊𝑛𝑠(𝑡𝑖)| ⋅ max
1≤𝑖≤𝑛

| ∑

𝑛

𝑗=1

𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗| 

= 𝑜(𝑛
1
2log𝑛) ⋅ 𝑂(1) ⋅ 𝑜(𝑛−

1
4) = 𝑜(𝑛

1
4log𝑛) = 𝑜𝑝(𝑛

1
2) 

  

It follows that 𝐴4𝑛 = 𝑜𝑝(𝑛1/2). Similarly, one can achieve that  

𝐸(𝐴6𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑗𝜖𝑖]

2 ≤ ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖
2𝛿𝑗

2[𝑊𝑛𝑗
𝑐 (𝑡𝑖)]2𝐸𝜇𝑗

2𝐸𝜖𝑖
2 = 𝑜(𝑛

1
2log−1𝑛) 

𝐸(𝐴8𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑖𝛿𝑗𝑊𝑛𝑗
𝑐 (𝑡𝑖)𝜇𝑖𝜇𝑗𝛽]2 

 ≤ 𝐶 ⋅ ∑

𝑛

𝑖1=1

∑

𝑛

𝑖2=1

∑

𝑛

𝑗1=1

∑

𝑛

𝑗2=1

[𝛿𝑖1
𝛿𝑖2

𝛿𝑗1
𝛿𝑗2

𝑊𝑛𝑗1
(𝑡𝑖1

)𝑊𝑛𝑗2
(𝑡𝑖2

)]𝐸(𝜇𝑖1
𝜇𝑖2

𝜇𝑗1
𝜇𝑗2

) 
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 ≤ 𝐶 ⋅ [∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

𝛿𝑗
2𝑊𝑛𝑗

2 (𝑡𝑖)𝐸(𝜇𝑖
2𝜇𝑗

2) + ∑

𝑛

𝑖1=1

∑

𝑛

𝑖2=1

𝑊𝑛𝑖1
(𝑡𝑖1

)𝑊𝑛𝑖2
(𝑡𝑖2

)𝐸(𝜇𝑖1

2 𝜇𝑖2

2 )] = 𝑂(1) 

 

Which leads to that 𝐴6𝑛 = 𝑜𝑝(𝑛1/2) 𝐴8𝑛 = 𝑜𝑝(𝑛1/2). Similarly, one achieve that 𝐴𝑘𝑛 = 𝑜𝑝(𝑛1/2) for 𝑘 = 5,7,9,10.  

 

Therefore, we can get that 𝐴𝑙𝑛/Σ𝑛 →
𝑃

0 for 𝑙 = 2,3, ⋯ ,10  
 

Step 2. We verify that 𝐴1𝑛/Σ𝑛 →
𝒟

𝑁(0,1). According to (??),  Step 1, we conclude that  

𝑆1𝑛
2 (�̂�𝑐 − 𝛽) = 𝐴1𝑛 + ∑

10

𝑙=2

𝐴𝑙𝑛 = ∑

𝑛

𝑖=1

𝜂𝑖𝑛 + 𝑜𝑝(1). 

From the condition that Σ𝑛
2 , Lemma 4.3, taking 𝑟 = min{𝑟1, 𝑟2/2} > 2 in (A0) and arbitrary 𝜂 > 0, as 𝑛 → ∞, one can 

verify that  

1

𝑛
⋅ ∑

𝑛

𝑖=1

𝐸[𝜂𝑖𝑛
2 ⋅ 𝐼(|𝜂𝑖𝑛| > 𝜂 ⋅ 𝑛

1
2)]  ≤

𝐶

𝑛
⋅ ∑

𝑛

𝑖=1

𝐸|𝜂𝑖𝑛|𝑟 ⋅ 𝐼(|𝜂𝑖𝑛| > 𝜂 ⋅ 𝑛
1
2)(𝜂 ⋅ 𝑛

1
2)−(𝑟−2) 

 ≤
𝐶

𝑛
⋅ ∑

𝑛

𝑖=1

[𝐸|𝛿𝑖𝜉𝑖
𝑐𝜖𝑖|

𝑟 + 𝐸|𝛿𝑖𝜉𝑖
𝑐𝜇𝑖𝛽|𝑟 + 𝐸|𝛿𝑖𝜇𝑖𝜖𝑖|

𝑟 + 𝐸|𝛿𝑖(𝜇𝑖
2 − Ξ𝜇

2)𝛽|𝑟](𝜂 ⋅ 𝑛
1
2)−(𝑟−2) 

 ≤
𝐶1

𝑛
∑

𝑛

𝑖=1

(𝜉𝑖
𝑐)2 max

1≤𝑖≤𝑛
|𝜉𝑖

𝑐|𝑟−2𝑛−
𝑟−2

2 + 𝐶2𝑛−
𝑟−2

2 = 𝑜(1). 

 

This means that Lindeberg¡¯s Condition for the Central Limit Theorem is supportive. Denote that 𝜂𝑖𝑛 = 𝛿𝑖[(𝜉𝑖
𝑐 +

𝜇𝑖)(𝜖𝑖 − 𝜇𝑖𝛽) + Ξ𝜇
2𝛽], 𝐸(𝜂𝑖𝑛) = 0  

 𝐸(𝜂𝑖𝑛
2 ) = 𝐸𝛿𝑖

2[(𝜉𝑖
𝑐 + 𝜇𝑖)(𝜖𝑖 − 𝜇𝑖𝛽) + Ξ𝜇

2𝛽]2 

  ≤ 𝐶 ⋅ 𝐸{(𝜉𝑖
𝑐𝜖𝑖)2 + (𝜉𝑖

𝑐𝜇𝑖𝛽)2 + (𝜇𝑖𝜖𝑖)
2 + (𝜇𝑖

2 − Ξ𝜇
2)2𝛽2}  ≤ ∞ 

 Therefore, 𝜂𝑖𝑛 is a dependent and random variables sequence with 𝐸𝜂𝑖𝑛 = 0 and V𝑎𝑟(∑𝑛
𝑖=1 𝜂𝑖𝑛) = Σ𝑛

2 . Thus, the 

proof of Theorem 3.1  is completed.           
 
Proof of Theorem 3.2. From (3.2) and (5.1), write that  

𝑆2𝑛
2 (�̂�𝐼 − 𝛽) = ∑

𝑛

𝑖=1

�̃�𝑖[𝑈𝑖
[𝐼]

− �̃�𝑖𝛽] + ∑

𝑛

𝑖=1

Ξ𝜇
2𝛽 

= ∑

𝑛

𝑖=1

𝛿𝑖[(𝜉𝑖 + 𝐷𝑖𝑛𝜉𝑖
𝑐)(𝜖𝑖 − 𝜇𝑖𝛽) + (1 + 𝐷𝑖𝑛)(𝜇𝑖𝜖𝑖 − (𝜇𝑖

2 − Ξ𝜇
2)𝛽)] + 𝑆1𝑛

−2 ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜉𝑖
2 ∑

10

𝑙=2

𝐴𝑙𝑛 

− ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜉𝑖[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] − ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜇𝑖[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] 

−[∑

𝑛

𝑖=1

𝜇𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗(𝜖𝑗 − 𝜇𝑗𝛽) − (1 − 𝛿𝑖)Ξ𝜇
2𝛽] − ∑

𝑛

𝑖=1

𝜉𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗(𝜖𝑗 − 𝜇𝑗𝛽) 

+ ∑

𝑛

𝑖=1

𝜉𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] + ∑

𝑛

𝑖=1

𝜇𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] 

∑

𝑛

𝑖=1

𝜉𝑖�̃�𝑖 + ∑

𝑛

𝑖=1

𝜇𝑖�̃�𝑖 − ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘𝛿𝑖(𝜖𝑖 − 𝜇𝑖𝛽) 

+ ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘(1 − 𝛿𝑖)[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] + ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗(𝜖𝑖 − 𝜇𝑖𝛽) 

− ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)] − ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘�̃�𝑖 
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+ ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜉𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝜉𝑗(�̂�𝑐 − 𝛽) + ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜉𝑖𝜇𝑖(�̂�𝑐 − 𝛽) 

+ ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜉𝑖𝜇𝑖(�̂�𝑐 − 𝛽) + ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)(𝜇𝑖 − Ξ𝜇
2)(�̂�𝑐 − 𝛽) 

− ∑

𝑛

𝑖=1

𝜉𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜉𝑗(�̂�𝑐 − 𝛽) − ∑

𝑛

𝑖=1

𝜇𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜉𝑗(�̂�𝑐 − 𝛽) 

− ∑

𝑛

𝑖=1

𝜉𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜇𝑗(�̂�𝑐 − 𝛽) − ∑

𝑛

𝑖=1

𝜇𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜇𝑗(�̂�𝑐 − 𝛽) 

− ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘(1 − 𝛿𝑖)𝜉𝑖(�̂�𝑐 − 𝛽) − ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1;𝑘≠𝑖

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘(1 − 𝛿𝑖)𝜇𝑖(�̂�𝑐 − 𝛽) 

− ∑

𝑛

𝑖=1

𝑊𝑛𝑖(𝑡𝑖)(1 − 𝛿𝑗)(𝜇𝑖
2 − Ξ𝜇

2)(�̂�𝑐 − 𝛽) + ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜉𝑗(�̂�𝑐 − 𝛽) 

+ ∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)(1 − 𝛿𝑗)𝜇𝑗(�̂�𝑐 − 𝛽) 

: = ∑

15

𝑙=1

𝐵𝑙𝑛 + ∑

28

𝑙=16

𝐵𝑙𝑛 ⋅ (�̂�𝑐 − 𝛽). 

 Similar to the proof of Theorem 3.1, one can deduce that 𝑆2𝑛
2 /𝑅𝑛

2 ⟶
𝑎.𝑠.

1 and �̂�𝑐 − 𝛽 = 𝑂𝑝(𝑛−
1

2). According to the 

above, to prove 𝑅𝑛
2(�̂�𝐼 − 𝛽)/Σ1𝑛 →

𝒟
𝑁(0,1), we only need to verify that 𝐵𝑙𝑛 = 𝑜𝑝(𝑛1/2) for 𝑙 = 2,3, ⋯ ,15, 𝐵𝑘𝑛 =

𝑜𝑝(𝑛) for 𝑘 = 16,17, ⋯ ,28 and 𝐵1𝑛/Σ1𝑛 →
𝒟

𝑁(0,1). 
 Step 1. We verify that 𝐵𝑙𝑛 = 𝑜𝑝(𝑛1/2) for 𝑙 = 2,3, ⋯ ,15 and 𝐵𝑘𝑛 = 𝑜𝑝(1) for 𝑘 = 16,17, ⋯ ,28. From the 

proof of Theorem 3.1 , we can get that 𝐵2𝑛 = 𝑜𝑝(𝑛1/2). According to the Lemmas 4.1-4.4, we deduce that,  
  

|𝐵3𝑛| = | ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)[ℎ̃𝑖 + 𝑣𝑖 − ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝑣𝑗][𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)]| 

  

 ≤ 𝐶 ⋅ | ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)ℎ̃𝑖[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)]| + 𝐶 ⋅ | ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝑣𝑖[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)]| 

  

−𝐶 ⋅ | ∑

𝑛

𝑖=1

[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)](1 − 𝛿𝑖) ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝑣𝑗| = 𝑜(𝑛
1
2) a. 𝑠. 

  

|𝐵4𝑛|  ≤ 𝐶 ⋅ | ∑

𝑛

𝑖=1

(1 − 𝛿𝑖)𝜇𝑖[𝑔(𝑡𝑖) − �̂�𝑛
𝑐 (𝑡𝑖)]| = 𝑂(𝑛

1
4log𝑛) a. 𝑠. 

  

𝐸(𝐵5𝑛)2  ≤ 𝐶 ⋅ 𝐸{∑

𝑛

𝑗=1

[∑

𝑛

𝑖=1

𝜉𝑖𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗](𝜖𝑖 − 𝜇𝑗𝛽)}2 

  

 ≤ 𝐶 ⋅ ∑

𝑛

𝑗=1

[∑

𝑛

𝑖=1

𝜉𝑖𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗]2𝐸(𝜖𝑗 − 𝜇𝑗𝛽)2 = 𝑂(𝑛
1
2log𝑛) 
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|𝐵8𝑛|  ≤ 𝐶| ∑

𝑛

𝑖=1

𝜇𝑖 ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)𝛿𝑗[𝑔(𝑡𝑗) − �̂�𝑛
𝑐 (𝑡𝑗)]| 

  

= 𝐶| ∑

𝑛

𝑖=1

𝜇𝑖𝑊𝑛𝑗(𝑡𝑖)| ⋅ ∑

𝑛

𝑗=1

|𝑔(𝑡𝑗) − �̂�𝑛
𝑐 (𝑡𝑗)| = 𝑜(𝑛

1
2) a. 𝑠. 

  

|𝐵9𝑛|  ≤ 𝐶| ∑

𝑛

𝑖=1

𝜉𝑖�̃�𝑖| = 𝐶𝑛−
1
2| ∑

𝑛

𝑖=1

(ℎ̃𝑖 + 𝑣𝑖 − ∑

𝑛

𝑗=1

𝑊𝑛𝑗(𝑡𝑖)�̃�𝑖)| = 𝑜(𝑛
1
2) a. 𝑠. 

  

𝐸(𝐵10𝑛)2  ≤ 𝐶 ⋅ 𝐸(∑

𝑛

𝑖=1

𝜇𝑖�̃�𝑖)
2 = 𝐶 ⋅ ∑

𝑛

𝑖=1

𝐸𝜇𝑖
2�̃�𝑖

2 = 𝑜(𝑛
1
2) 

  

𝐸(𝐵11𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘𝛿𝑖(𝜖𝑖 − 𝜇𝑖𝛽)]2 

  

= 𝐶 ⋅ 𝐸[∑

𝑛

𝑖1=1

∑

𝑛

𝑖2=1

∑

𝑛

𝑘1=1

∑

𝑛

𝑘2=1

𝑊𝑛𝑘1
(𝑡𝑖1

)𝑊𝑛𝑘2
(𝑡𝑖2

)𝜇𝑘1
𝜇𝑘2

𝛿𝑖1
𝛿𝑖2

(𝜖𝑖1
− 𝜇𝑖1

𝛽)(𝜖𝑖2
− 𝜇𝑖2

𝛽)] 

  

 ≤ 𝐶 ∑

𝑛

𝑖=1

𝛿𝑖
2𝐸(𝜖𝑖 − 𝜇𝑖𝛽)2 ∑

𝑛

𝑘=1

𝑊𝑛𝑘
2 (𝑡𝑖)𝐸(𝜇𝑘)2 

  

+𝐶 ∑

𝑛

𝑖1=1

𝑊𝑛𝑖1
(𝑡𝑖)𝛿𝑖1

𝐸(𝜇𝑖1
)𝐸(𝜖𝑖1

− 𝜇𝑖1
𝛽) ⋅ ∑

𝑛

𝑖2=1

𝑊𝑛𝑖2
(𝑡𝑖2

)𝛿𝑖2
𝐸(𝜇𝑖2

)𝐸(𝜖𝑖2
− 𝜇𝑖2

𝛽) 

  

= 𝑜(𝑛
1
2log−1𝑛) 

  

𝐸(𝐵15𝑛)2  ≤ 𝐶 ⋅ 𝐸[∑

𝑛

𝑖=1

∑

𝑛

𝑘=1

𝑊𝑛𝑘(𝑡𝑖)𝜇𝑘�̃�𝑖]
2 ≤ 𝐶 ⋅ ∑

𝑛

𝑘=1

[∑

𝑛

𝑖=1

𝑊𝑛𝑘(𝑡𝑖)�̃�𝑖]
2𝐸(𝜇𝑘)2 

  

 ≤ 𝐶 ⋅ ∑

𝑛

𝑘=1

(𝑂(1) ⋅ �̃�𝑖
2) = 𝑜(𝑛

1
2) 

 In the same way, we can verify that 𝐵𝑙𝑛 = 𝑜𝑝(𝑛1/2) for 𝑙 = 6,7, ⋯ ,16 and 𝐵𝑘𝑛 = 𝑜𝑝(1) for 𝑘 = 17, ⋯ ,28. 
 

 Step 2. We verify that 𝐵1𝑛/Σ1𝑛 →
𝒟

𝑁(0,1). Let 𝐵1𝑛 = ∑𝑛
𝑖=1 𝛾𝑖𝑛, where 𝛾𝑖𝑛 = 𝛿𝑖[(𝜉𝑖 + 𝐷𝑖𝑛𝜉𝑖

𝑐)(𝜖𝑖 − 𝜇𝑖𝛽) + (1 +
𝐷𝑖𝑛)(𝜇𝑖𝜖𝑖 − (𝜇𝑖

2 − Ξ𝜇
2)𝛽)]. As a result, 𝛾𝑖𝑛 is a dependent and random variables sequence with 𝐸𝛾𝑖𝑛 = 0 and 

V𝑎𝑟(∑𝑛
𝑖=1 𝛾𝑖𝑛) = Σ1𝑛

2 . Meanwhile, we can deduce that | ∑𝑛
𝑖=1 𝜉𝑖| = 𝑜(𝑛3/4), | ∑𝑛

𝑖=1 𝑣𝑖| = 𝑂(𝑛1/2log𝑛), 

| ∑𝑛
𝑗=1 𝑊𝑛𝑗(𝑡𝑖)𝜉𝑗| = 𝑂(1) and 𝐷𝑖𝑛 = 𝑜(1) by the A(0)-A(4). From the condition that Σ1𝑛

2 , Lemma 4.3, taking 𝑟 =

min{𝑟1, 𝑟2/2} > 2 in (A0) and arbitrary 𝛾 > 0, as 𝑛 → ∞, one can verify that  
  

1

𝑛
⋅ ∑

𝑛

𝑖=1

𝐸[𝛾𝑖𝑛
2 ⋅ 𝐼(|𝛾𝑖𝑛| > 𝛾 ⋅ 𝑛

1
2)]  ≤

𝐶

𝑛
⋅ ∑

𝑛

𝑖=1

𝐸|𝛾𝑖𝑛|𝑟 ⋅ 𝐼(|𝛾𝑖𝑛| > 𝛾 ⋅ 𝑛
1
2)(𝛾 ⋅ 𝑛

1
2)−(𝑟−2) 

  

 ≤
𝐶

 𝑛
⋅ ∑

𝑛

𝑖=1

[𝐸|𝛿𝑖(𝜉𝑖 + 𝐷𝑖𝑛𝜉𝑖
𝑐)(𝜖𝑖 − 𝜇𝑖𝛽)|𝑟 + 𝐸|𝛿𝑖𝜇𝑖𝜖𝑖|

𝑟 + 𝐸|𝛿𝑖(𝜇𝑖
2 − Ξ𝜇

2)|𝑟𝛽𝑟](𝛾 ⋅ 𝑛
1
2)−(𝑟−2) 
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 ≤
𝐶

𝑛
⋅ ∑

𝑛

𝑖=1

[𝐸|𝛿𝑖𝜉𝑖𝜖𝑖|
𝑟 + 𝐸|𝛿𝑖𝜉𝑖𝜇𝑖𝛽|𝑟 + 𝐸|𝛿𝑖𝜉𝑖

𝑐𝜖𝑖|𝑟 + 𝐸|𝛿𝑖𝜉𝑖
𝑐𝜇𝑖𝛽|𝑟 + 𝐸|𝛿𝑖𝜇𝑖𝜖𝑖|

𝑟 

  

+𝐸|𝛿𝑖(𝜇𝑖
2 − Ξ𝜇

2)|𝑟𝛽𝑟](𝛾 ⋅ 𝑛
1
2)−(𝑟−2) 

  

 ≤
𝐶1

𝑛
∑

𝑛

𝑖=1

(𝜉𝑖)
2 max

1≤𝑖≤𝑛
|𝜉𝑖|

𝑟−2𝑛−
𝑟−2

2 +
𝐶2

𝑛
∑

𝑛

𝑖=1

(𝜉𝑖
𝑐)2 max

1≤𝑖≤𝑛
|𝜉𝑖

𝑐|𝑟−2𝑛−
𝑟−2

2 + 𝐶3𝑛−
𝑟−2

2 = 𝑜(1). 

 The 𝐿𝑖𝑛𝑑𝑒𝑏𝑒𝑟𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is workable. Therefore, one can get 𝐵1𝑛/Σ1𝑛 →
𝒟

𝑁(0,1). Thus, the proof of Theorem 3.2 

is completed.           
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