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ABSTRACT 

The universality discovered by M.J.Feigenbaum with non-linear models has successfully led to observe that large 

classes of non-linear systems exhibit transitions to chaos through period doubling route. In this paper, we consider a 

two parameter map of the plane viz. the Henon map, develop some useful numerical  algorithms  to  obtain  fixed  

points  and  bifurcation  values  of  periods 
n2 ,   ...,2,1,0n  We have shown how the ratio of three successive 

period doubling bifurcation points ultimately converge to the Feigenbaum constant. This ascertains that the Henon 

map follows the period doubling route to chaos.  

Keywords:  Bifurcation/ Chaos / Fixed Points / Feigenbaum constant. 

 

1.  INTRODUCTION 

The universality discovered by the elementary particle theorist, Mitchell J. Feigenbaum in 1975 in one-dimensional 

iterations with the logistic map, )1(1 nnn xxx   has successfully led to discover that large classes of non-

linear systems exhibit transitions to chaos which are universal and quantitatively measurable [4],  [5].  

One of his fascinating discoveries is that if a family f  presents period doubling bifurcations then there is an infinite 

sequence  n of bifurcation values such that  












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nn

nn

n
1

1lim , where   is a universal number which is now 

termed as Feigenbaum constant.   

In [7] Henon, motivated by computer studies of the Lorenz system performed by Pomeau, studied a transformation 

which maps the plane into itself. Henon was able to prove, among other things, that the transformation which he 

considered was the most general quadratic map which carries the plane into itself and has constant Jacobian 

determinant. In a remarkable sequence of computer graphics he gave strong numerical evidence that the 

transformation he studied has a strange attractor.  

The Henon map leads from the one dimensional dynamics of the quadratic transformation to higher dimensional 

strange attractors. It is simple enough to allow an analysis similar to the analysis of chaos in the logistic 

transformation, yet it possesses features inherent in more complicated attractors such as the Lorenz attractor. 

Recently control and synchronization algorithms for the Henon map have been utilized for secure communications 

[3] and for control of pathological rhythms in some models of cardiac activity [1]. 

 

2. THE HENON MAP AND THE FEIGENBAUM UNIVERSALITY: 

The Henon map is a map from 
2R  to 

2R  depending on two real parameters b,  and is given by 

   bxyxyxHyxH b ,1),(),( 2

,   . In a geometric sense, stretching and folding in phase space often 
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gives rise to chaotic behavior. Stretching results in nearby points diverging, folding results in distant points being 

mixed together. We can partition the Henon map into three steps to see its correspondence to the stretch and fold 

action [8] in the following way.  

(a) Bend up: The first step consists of a nonlinear bending in the y coordinate given by  

  yxxyxH  2

1 1,),(   

For example, a horizontal line ( y constant) becomes a parabola with the vertex at )1,0( y  and opening up at 

the bottom. In contrast, the remaining two steps are linear transformations. 

(b) Contraction in x: Next a contraction in x-direction is applied    

  yxbxyxH  2

2 1,),(   

The contraction factor is given by the parameter b , which is 0.3 for the Henon attractor. 

(c) Reflection: Finally a reflection at the diagonal 

   xyyxH ,),(3   

The result of the compression is the same as applying the original transformation once, i.e.  

   ),(),( 123 yxHHHyxH  . 

If 0b , the Henon map reduces to the Logistic map which follows period doubling route to chaos [6], [8]. The 

automatic question which comes up is that if 0b , is there still the Feigenbaum scenario present ? 

If 0b ,  bxyxyxH b ,1),( 2

,    is a diffeomorphism of
2R onto itself. The inverse of the map is given 

by  2211

, 1,),( ybxybyxH b

   . Note  that the Jacobian of bH ,  is the constant b . So, bH ,  is 

dissipative if 1|| b , area-preserving if 1b , and the area-expanding if 1|| b . Note also that the case 

1|| b  can be effectively reduced to the case 1|| b , since THTH bbb

1

 ,

1

, 12

 
 where the mapping T  is 

given by ),(),( xyyxT   [2]. 

The Henon map has two fixed points, say ),( 11 yx and ),( 22 yx  whose coordinates are given by the solutions of  

   ),(,1),( 2 yxbxyxyxH    and they are found to be  

   
 

bxy         ,
2

4)1(1 2







bb
x    

Thus, the fixed points of the Henon map are found to be  

 

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2
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



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
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
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









2

241
  ,

2

2411 222 bbbbb
y

bbb
x  

From this one finds that bH ,  has no fixed point if 
2)1(

4

1
b .  
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In this context, we also wish to point out that the stability theory is intimately connected with the Jacobian matrix of 

the map, and that the trace of the Jacobian matrix is the sum of its eigenvalues and the product of the eigenvalues 

equals the Jacobian determinant. For a particular value of b  in the closed interval ]1,1[ , the Henon map H  

depends on the real parameter  , and so a fixed point ),( 000 yxx  (or a periodic point 0x ) of this map depends 

on the parameter value  , i.e. )(00 xx  . Henon chose 3.0b  to obtain the attractor named after him.  

The Jacobian matrix 1J  (say) of the Henon map is given by  

   









0

12
1

b

x
J


 

If 21,   are the eigenvalues of 1J  then we have  

 x 221   and b21   

Now, for period doubling bifurcation to take place, one of the eigenvalues must be 1 . So, if we take ,12   

then the above equations reduces to 

   b1    (from the second equation) 

  and xb 21     (from the first equation) 

Now, putting  
 





2

4)1(1 2 


bb
x  in the second equation and solving for  , we get 

2)1(
4

3
b . This implies that the first period doubling bifurcation for the Henon map takes place at 

2

1 )1(
4

3
)( bsay   and hence this becomes the first bifurcation point.  

Implication of this is that the fixed point 0x  given by   













 










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2

241
  ,

2

2411 222 bbbbb
y

bbb
x  remains stable for all 

values of    lying in the interval 







 22

1 )1(
4

3
,)1(

4

1
bbI  and a stable periodic trajectory of period one 

appears around it. This means that the two eigenvalues of the Jacobian matrix  











0

12
1

b

x
J


  

at  0x  remains less than one in absolute value.  For e.g. if we choose 4.0b  then  27.,09.1 I . Now, if 

we take 102.0 I  then the eigenvalues for the above case are found to be 66491.0  and 601585.0  

which are less than 1 in absolute value. So, all the neighbouring points (the points in the domain of attraction) are 

attracted towards  ),(x 0  lying in  1I . Interestingly, for the same set of values of  b  and  , if we calculate 

the eigenvalues for the other fixed point viz. 
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







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
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
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  ,

2

2411 222 bbbbb
y

bbb
x ,                     they are 

found to be 52553.1  and 262204.0 . Thus, one of the eigenvalues is greater than one and this suggests that this 

fixed point is unstable.  

For some negative values of b  for which   lies in the region between the boundary curves 

bbb  )1(  yield complex eigenvalues for the Jacobian .1J  For e.g. if we consider 1.0b  and 

3.0 , then the eigenvalues for the first fixed point are found to be i220974.0226209.0   and 

i220974.0226209.0  . This region where complex eigenvalues appear is exhibited in figure 1.  

 
Fig.1: Regions of complex eigenvalues for periods 1 and 2 

Significance of complex eigenvalues is that successive iterations of the map spiral into (or spiral out from) 

the stable (unstable) fixed point, and that of real eigenvalues is that consecutive iterations approach the stable fixed 

point along the direction of the eigenvector corresponding to the higher eigenvalues in modulus.  

If we now begin to increase the value of  , then it happens that one of the eigenvalues starts decreasing 

through 1  and the other remains less than one in modulus, because their product is always equal to )( b  and we 

have taken ]1,1[b . When   equals ,)1(
4

3 2b  one of the eigenvalues becomes 1  and then 0x loses its 

stability, i.e. 
2

1 )1(
4

3
b emerging as the first bifurcation value of  .  
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Now, if we keep on increasing the value of   the point  )(0 x becomes unstable (this can be verified by 

finding out the eigenvalues which will be greater than one in absolute value) and there arises around it two points, 

say, )( and )( 2221  xx forming a stable periodic trajectory of period 2.  

So, at this point we have to shift our attention from the first iteration to the second iteration of the map 

which is given by  .),(),(2 yxHHyxH   

The fixed points of  ),(2 yxH  are the periodic points of period 2 for the Henon map ),( yxH  and they 

are found by solving the equation 

  ),()1(,)1(1),( 2222 yxyxbyxbxyxH   . 

The solutions of this fourth degree equation are found to be  
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Interestingly, the first two periodic points of period 2 are already fixed points of ),( yxH  which already 

become unstable once the parameter value 
2)1(

4

3
b is attained where the first bifurcation took place. So, we 

are not concerned with those two points and we discuss only about the nature of stability of the other two periodic 

points. It can be easily seen that the two periodic points of period 2 do not exist if 
2)1(

4

3
b . 

The Jacobian matrix 2J  (say) of the second iteration of the Henon map is given by  

 













bbx

yxyxxb
J





2

)1(2)1(4 222

2  

If 21,   are the eigenvalues of 2J  then, as earlier, we have  

 )1(42 22

21 yxxb    and 
2

21 b   

If we take ,12   then the above equations lead to 

  0)1(412 222  yxxbb       

Now, putting  












 













2

3643
  ,

2

36431 222 bbbbb
y

bbb
x  in the second 

equation and solving for  , we get 
22 )1()1(

4

1
bb  .  

            The same can be verified for the other periodic point  
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This implies that the second period doubling bifurcation for the Henon map takes place at 

.)1()1(
4

1
)( 22

2 bbsay   As discussed earlier, if we find the eigenvalues, this time we will find that 

eigenvalues in both the cases are same and will be less than one in absolute value.  For e.g. if we consider 4.0b  

and 2)85.0,27.0(3.0 I , then the eigenvalues for both the periodic points of period 2 are found to be 

852265.0  and 187735.0 . This implies that both the periodic points of period 2 are stable in between the 

parameter values 
2

1 )1(
4

3
b  and .)1()1(

4

1 22

2 bb   If we increase the parameter value still 

further, the periodic points of period 2 become unstable. This means that all the neighbouring points except the 

stable manifold of )(0 x are attracted towards these two points and this phenomenon continues for all   lying in 

the open interval 







 222 )1()1(

4

1
,)1(

4

3
bbb . Since the period emerged becomes double, the previous 

eigenvalue which was 1  becomes 1  and as we keep increasing  , one of the eigenvalues starts decreasing 

from 1   to 1 . 

      As earlier, it can be shown that some negative values of b  for which   lies in the region between the 

curves 
221 bb   and 

21 bb   yield complex eigenvalues for the Jacobian 2J . For e.g. if we 

consider 1.0b  and )21.1,11.1(2.1  =  22 21,1 bbbb  , then the eigenvalues for both the 

periodic points of period 2 are found to be i06.008.0  . This region is also shown in  fig. 1. Since the trace is 

always real, when eigenvalues are complex, they are conjugate to each other moving along the circle of radius 

eb , where 
n

bbe

2 is the effective Jacobian, in the opposite directions. When we reach 

,)1()1(
4

1 22

2 







 bb  we find that one of the eigenvalues of the Jacobian of 

2H  becomes  1  

indicating the loss of stability of the periodic trajectory of period two.  At this point, it is important to mention that 

because of the chain rule of differentiation, it does not matter at which periodic point  we evaluate the eigenvalues,. 

Thus, the second bifurcation takes place at this value 2  of   .  

      If we increase the parameter beyond ,)1()1(
4

1 22

2 







 bb  then all the fixed points and periodic 

points we found out earlier become unstable and new periodic points of period 4 appear into the scene. The study 

regarding their nature of stability can be done with the help of the fourth order iteration of the Henon map viz. 

).,(4 yxH   

 Increasing the value   further and further, and repeating the same arguments we obtain a sequence 

 )(bn  as bifurcation values for the parameter   such that at )(bn   a periodic trajectory of period 
n2  

arises and all periodic trajectories of period )(2 nmm   remain unstable. The sequence  )(bn  behaves in a 

universal manner such that 
n

n bcbb 

   )()()( , where )(bc is independent of n  and   and is the 

Feigenbaum Universal constant.  Since the Henon map has constant Jacobian 1||,  bb  gives the dissipative 
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case, that is, contraction of area  and in this case   equals 4.6692016091029… . For 1|| b  we have the 

conservative case, i.e. the preservation of area and in this case   equals 8.721097200…  .  

       Already we have seen the enormous computational difficulty associated with the analytical discussion in 

case of the periodic points of period 2. So, analytical discussion beyond this stage is practically impossible and we 

have to take recourse to some numerical technique. Our effort in this paper is to put forward a numerical scheme 

which is simple and straightforward, by which we can find the periodic points of higher period, corresponding 

bifurcation points with the help of the first two bifurcation points which we found analytically and then show how  

the Feigenbaum constant is achieved via a series of period doubling bifurcations  in case of the two parameter 

Henon map. 

 
3.   NUMERICAL METHOD FOR OBTAINING PERIODIC POINT: 

Although there are so many sophisticated numerical algorithims to find a periodic fixed point, we have 

found that the Newton Recurrence formula is one of the best numerical methods with negligible error for our 

purpose. Moreover, it gives fast convergence of a periodic fixed point. 

 The Newton Recurrence formula is 

  )()( 1

1 nnnn xfxDfxx 

  , where ...,2,1,0n  and ))(( xDf  is the Jacobian of the 

map f at the vector x  . We see that this map f  is equal to IH k   in our case, where k  is the appropriate period. 

The Newton formula actually gives the zero(es) of a map, and to apply this numerical tool in the Henon map one 

needs a number of recurrence formulae which are given below. 

 Let the initial point be ),( 00 yx , 

Then,    ),(,1),( 1100

2

000 yxbxyxyxH    

      ),(,1),(),(),( 2211

2

1110000

2 yxbxyxyxHyxHHyxH    

Proceeding in this manner the following recurrence formula for the Henon map can be established. 

  1

2

11   nnn yxx      and     1 nn bxy    where ...,3,2,1n   

Since the Jacobian of 
kH  ( k  times iteration of the Henon map ) is the product of the Jacobian of each 

iteration of the map, we proceed as follows to describe our recurrence mechanism for the Jacobian Matrix. 

 The Jacobian 1J  for the transformation  

    00

2

000 ,1),( bxyxyxH    is  

 

















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1
0

12

DC

BA

b

x
J


   where .0,,1,2 11101  DbCBxA   

Next the Jacobian  2J  for the transformation  

),(),( 2200

2 yxyxH   where 2x  and 2y  are as mentioned  above, is the product of the Jacobians for the 

transformations  

   11

2

111 ,1),( bxyxyxH     and  00

2

000 ,1),( bxyxyxH   .  

So we obtain 










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
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

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
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 

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111111 x2-x2-

bBbA
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









22

22

C

BA

D
  

where   .,,2,2 121211121112 bBDbACDBxBCAxA    

Continuing this process in this way we have the Jacobian for 
mH as 
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  



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




mm

mm

m
DC

BA
J   with a set of recursive formula as 

  .,,2,2 11111111   mmmmmmmmmmmm bBDbACDBxBCAxA   

....,4,3,2m   

Since the fixed point of this map H  is a zero of the map  

  ),(),(),(/ yxyxHyxH  , the Jacobian of 
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where kkkk CBDA  )1()1( , the Jacobian determinant. Therefore, Newton’s method gives the 

following recurrence formula in order to yield a periodic point of 
kH  
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    where ),()(Hk

nnn yxx   

 
4. NUMERICAL METHODS FOR FINDING BIFURCATION VALUES: 

 First of all, we recall our recurrence relations for the Jacobian Matrix of the map 
kH  described in the 

Newton’s method and then the eigenvalue theory gives the relation 
k

kk bDA )(1   at the bifurcation 

value. Again the Feigenbaum theory says that 

   (*)                 1

12



 nn

nn


 

  

where ...,3,2,1n  and    is the Feigenbaum Universal constant. 

 In the case of the Henon map, the first two bifurcation values 1  and 2  can be evaluated by their explicit 

formulae, viz. 

    )1()1(
4

1
  and  )1(

4

3 22

2

2

1 bbb    

 Furthermore, it is easy to find the periodic points for these 1  and 2  for any value of b . We note that if 

we put 
k

kk bDAI )(1  , then I  turns out to be a function of the parameter   . The bifurcation value of 

  of the period k  occurs when )(I  equals zero. This means, in order to find a bifurcation value of period k , 

one needs the zero of the function )(I , which is given by the Secant method, 

   .
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II
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Then using the relation (*), an approximate value 33  of 
/

  is obtained. Since the Secant method needs two initial 

values, we use 
/

3 and a slightly larger value, say, 
4

3 10
/   as the two initial values to apply this method and 
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ultimately obtain 3  . In like manner, the same procedure is employed to obtain the successive bifurcation values 

...,, 54  etc. to our requirement. For 4.0b , we enlist in table 1 some fixed/ periodic points, bifurcation 

values, the value of   for the periods, 
65432 2,2,2,2,2k  . We have given below the related c programs 

which were used in deriving them and they can be used for more higher iterations also, with slight modifications in 

the given programs.  

 

 

Table 1 ( For  b=0.4 ) 

Value of    Corresponding Fixed/Periodic point          Bif. value               Value of    

k (period) 

 

422    x = 0.918282704031     y = -0.321894581383       0.9604256555251        5.25240 

823    x = 0.826868693798     y = -0.338715771759       0.9846927066042        4.55044 

1624   x = 0.807283361091     y = -0.343278299162       0.9899196678604        4.64267 

3225   x = 1.010391757182     y = -0.289199527902       0.9910420559598        4.657 

6426   x = 1.011434848026     y = -0.288831698131       0.9912825840017        4.66635 

We have furnished the programs below through which we have found the above periodic points and bifurcation 

values. 

 

Program 1 for finding approx. periodic and bifurcation points by trial and error method which utilizes 

Newton’s method.  

#include<stdio.h> 

#include<math.h> 

main() 

{ 

    int k, c1, c2, c3, c4; 

    double m, a, c, x1, x2, y1, y2, z1, z2, t1, t2, n1, n2, b, e1, e2, l1, l2, q, d, i, p, h1, h2, f1, f2; 

    k=32; 

    m=.992301; 

    b=0.4; 

    printf("\n enter the values of x1 and y1\n"); 

    scanf("%lf%lf",&x1,&y1); 

    for(c1=1;c1<=100;c1++) 

         { 

             a=x1;c=y1; 

                 for(c2=1;c2<=k;c2++) 

                      { 

               z1=1-m*x1*x1+y1;f1=b*x1; x1=z1;y1=f1; 

                      } 

     x2 = x1;    y2 = y1;    x1= a;      y1= c; 

     l1= -2*m*x1;    e1=1;    n1=b;    t1=0; 

                for(c3=1;c3<=(k-1);c3++) 

                         { 

                 z2 = 1-m*x1*x1+y1;   f2 = b*x1;    d = -2*m*z2;    l2 = d*l1+n1;     

                             e2 =d*e1+t1;   n2 = b*l1;   t2 = b*e1;   x1= z2;           

   y1=f2;   n1= n2;    e1= e2;   t1= t2;   l1= l2; 

                          } 
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        i = l2 + t2 +1+ pow((-b),k); 

        x1=a;    y1=c; 

        h1= x1-((t2-1)*(x2-x1)-e2*(y2-y1))/((t2-1)*(l2-1)-e2*n2); 

        h2 = y1-((-n2)*(x2-x1)+(l2-1)*(y2-y1))/((t2-1)*(l2-1)-e2*n2); 

        x1= h1;   y1=h2; 

       printf("\n the fixed pts and i values are\n"); 

       printf("%lf %lf %lf\n",x1,y1,i); 

    } 

  return 1; 

 } 

 
Program 2 for finding final periodic and bifurcation points by Secant method.  

#include<stdio.h> 

#include<math.h> 

main() 

{ 

     int k, c1, c2, c3, c4, c5, c6; 

     double m, a, c, x1, x2, y1, y2, z1, z2, t1, t2, n1, n2, b, e1, e2, l1, l2, q, d, i, p, h1, h2, f1, f2; 

     double m1, m2, m3, ao, co, zo1, zo2, fo1, fo2, lo1, lo2, eo1, eo2, no1, no2, to1, to2, i1, i2,  

     ho1, ho2; 

     k = 4; 

     m1=.96042563;  m2=.9604256300001; 

     b=0.4; 

     printf("\n enter the values of x1 and y1\n"); 

     scanf("%lf%lf",&x1,&y1); 

     for(c1=1;c1<=100;c1++) 

        { 

            a=x1;     c=y1; 

                 for(c2=1;c2<=k;c2++) 

                       { 

                 z1=1-m1*x1*x1+y1;     f1=b*x1;    x1=z1;    y1=f1; 

                        } 

             x2=x1;      y2=y1;    x1=a;     y1=c; 

             l1=-2*m1*x1;         e1=1;       n1=b;     t1=0; 

                  for(c3=1;c3<=(k-1);c3++) 

                       { 

                z2=1-m1*x1*x1+y1;     f2=b*x1;    d=-2*m1*z2;     l2=d*l1+n1;   e2=d*e1+t1;   

                            n2=b*l1;         t2=b*e1;      x1=z2;      y1=f2;   n1=n2;   e1=e2;   t1=t2;  l1=l2; 

                        } 

             x1=a;    y1=c; 

           h1 = x1-((t2-1)*(x2-x1)-e2*(y2-y1))/((t2-1)*(l2-1)-e2*n2); 

           h2 = y1-((-n2)*(x2-x1)+(l2-1)*(y2-y1))/((t2-1)*(l2-1)-e2*n2); 

           x1=h1;    y1=h2; 

       } 

     i1=l2+t2+1+pow((-b),k); 

 for(c4=1;c4<=100;c4++) 

                 { 

                     ao=x1;      co=y1; 

                          for(c5=1;c5<=k;c5++) 

                                 { 

                        zo1=1-m2*x1*x1+y1;      fo1=b*x1;      x1=zo1;     y1=fo1; 

                                  } 

                       x2=x1;    y2=y1;   x1=ao;   y1=co; 

                       lo1= -2*m2*x1;    eo1=1;   no1=b;     to1=0; 

             for(c6=1;c6<=(k-1);c6++) 

                 { 
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          zo2=1-m2*x1*x1+y1;    fo2=b*x1;     d= -2*m2*zo2;     lo2=d*lo1+no1;         

                      eo2=d*eo1+to1;    no2=b*lo1;      to2=b*eo1; 

           x1=zo2;      y1=fo2;     no1=no2;     eo1=eo2;    to1=to2;   lo1=lo2; 

                 } 

         x1=ao;     y1=co; 

         ho1=x1-((to2-1)*(x2-x1)-eo2*(y2-y1))/((to2-1)*(lo2-1)-eo2*no2); 

         ho2=y1-((-no2)*(x2-x1)+(lo2-1)*(y2-y1))/((to2-1)*(lo2-1)-eo2*no2); 

         x1=ho1;y1=ho2; 

      } 

        i2=lo2+to2+1+pow((-b),k); 

        m3=m2-(i2*(m2-m1))/(i2-i1); 

        m1=m2;m2=m3; 

        printf("\n the values of x1 y1 and m2 are"); 

        printf("%15.12f %15.12f %15.20f",x1,y1,m2); 

       return 1; 

 } 
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