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Abstract

Generalized Orthogonal GARCH (GO-GARCH) model, one of multivariate GARCH model, has been unused
enough for modeling the volatility dynamics among indices in stock markets. Thus, this paper compares between
Dynamic Conditional Correlations (DCC) models and GO-GARCH for modeling the volatility dynamics among major
indices in three groups. The first group contains three indices in Americas market, namely, Dow Jones Industrial
Average, MERVA and S&P/TSX. The second group consisted of three indices in European market, namely, FTSE100,
CAC40 and DAX30, and the third group contained three indices in Asian market, namely, Nikkei225, Shanghai and
BSE Sensex 30 (BSESN). The DCC-GARCH models were applied with different assumptions of the error distribution;
Gaussian and Student-t. The factors or components in GO-GARCH model were estimated by four estimators':
Maximum Likelihood (ML), Nonlinear Least Square (NLS), Fast Independent Component Analysis (Fast-ICA) and
Method of Moment (MM). The results indicate that the GO-GARCH models are most effective for modeling the
volatility dynamics among indices in the three groups compared to DCC model; especially when the time series of
indices under study have asymmetry and volatility clusters. Also, the performance tests suggested that the GO-
GARCH model estimated with Maximum Likelihood is the best estimator in European group, and Method of Moment
estimator performs better in estimating the Americas and Asian groups. The results of the conditional correlations
between indicators in each group have an economic significance which provides investors with new ways to diversify
investment portfolios and reduce the risk.
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1. Introduction

Modeling the volatility dynamics among major indices in stock markets is an important issue, which provides investors
with new ways to diversify investment portfolios and reduce the risk. In addition, the Multivariate Generalized
Autoregressive Conditional Heteroskedasticity GARCH model (MGARCH), an extension of the univariate GARCH,
is considered as one of the most useful tools for analyzing and forecasting the indices in stock markets.

The GO-GARCH model is a generalization of the Orthogonal GARCH model (O-GARCH) and proposed by van der
Weide (2002). In this model, we can express the vector of indices as a non-singular linear transformation of factors
that have a GARCH-type conditional variance specification. The GO-GARCH model is characterized by the
simplicity and robustness of the procedures for estimating the parameters. The model used a highly efficient and less
intensive parameter for estimation approach to decompose the variance-covariance matrix into orthogonal sources of
volatility. The model basically consisted of two parts, the first part, a set of conditionally uncorrelated univariate
GARCH processes and the second part is a linear map which connects the factors to the observed data.

In this paper, we compare between DCC models and GO-GARCH for modeling the volatility dynamics among major
indices in three groups. The first group contained three indices in Americas market. The second group contained three
indices in the European market, and the third group contained three indices in Asian market. The factors in GO-
GARCH model were estimated by four estimators: Maximum likelihood, Nonlinear least square, Fast Independent
Component Analysis and Method of Moment.

This paper was organized as follows. In Section 2, some MGARCH models were reviewed. An empirical comparison
of the models was given in Section 3. Finally, a summary and a conclusion were provided in Section 4.

2. Multivariate GARCH Models

Several literatures dealt with univariate GARCH models, but interaction between markets sometimes, needed to
use the MGARCH models, which were defined as:
Ve = U T & 1)
& = Htl/zzt 2
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Where y, : nx 1 vector of stochastic process at time t, u,: nx 1 vector of conditional mean, &,: nx 1 vector of shocks
,or innovation of the series at time t, H,: nx n matrix of conditional variances of ¢, at time t, z,: 1x n vector of iid
error such that E(z,) = 0.var(z,) = I,,where is an identity matrix of order n.[12]

The MGARCH models can be divided into four types [15].

e Models of the conditional covariance matrix; for example, VEC and BEKK models, these models were
characterized by the conditional covariance matrix H, was modeled directly.

e Factor models; these models were characterized by, the conditional covariance matrix was motivated by
parsimony, the process &, was assumed to be generated by a small number of unobserved heteroskedastic factors,
for example, the Orthogonal GARCH and GO-GARCH model.

e Models of conditional variances and correlations; The models were built on the concept of modeling the
conditional variances and correlations instead of straightforward modeling the conditional covariance matrix. For
example, Dynamic Conditional Correlations model and the Constant Conditional Correlations model.

¢ Nonparametric and semiparametric approaches; these models were alternatives to the parametric estimation
of the conditional covariance structure.

The following subsections is giving a brief introduction to the some MGARCH models which will be used in this
paper. This paper focus on the GO-GARCH and DCC-GARCH models.

2.1 The DCC-GARCH model
The Dynamic Conditional Correlation model (DCC) was proposed by Engle in 2002. It is a non-linear combination

of univariate GARCH maodels if we have y, returns with expected value 0 and covariance matrix H,.Thus, the DCC-
GARCH model is defined as: [3,5]
H; = D(R.D, 3)

1
Where, D, : nx n diagonal matrix of conditional standard deviation of &, at time t,= diag (h3,

was defined as a univariate GARCH type model.

hit = w; + 221:1 aiqgiz.t—q + §i=1 Biphit—p (4)
w;. &g and B, Were non negative parameters for i=1,...,n

R..: nxn conditional correlation matrix of &, at time t, it is decomposed into:

1
2 hig

Re = Q7 Q.Q:™ 5)
Q; : was the nxn symmetric positive definite matrix which had the form:
Q=0—-a-b)Q+au_ U4 +bQ, (6)

Q : was the unconditional variance matrix of u,. Q = Cov[u, ] = E[u, 1] ,the estimate of Q = %Z{Zl u, i, .aand
b were non-negative scalar parameters that satisfy a + b < 1

Qf = m was a diagonal matrix with the square root of the it diagonal element of Q, on its i diagonal position.
The number of parameters to be estimated is (N+1)x(N+4)/2, the DCC model can be estimated by two-steps , the
conditional variance is estimated via univariate GARCH model for each variable in the first step, then the estimation
results were used as input to estimate the correlation parameters in the second step. [18] .

2.1.1 Estimation of DCC-GARCH Models
In this subsection, parameters of a DCC-GARCH model were estimated by two different distributions for the error;

the multivariate Gaussian and the multivariate Student’s t.[6,7,13]:

2.1.1.1 Multivariate Gaussian distributed errors
The joint distribution of z, t = 1....T ,when the standardized errors, z,, were multivariate Gaussian distributed
was:

1 1,
f(z) = HI=1WGXP {—;Zt Zt} (7
Elz,] =0.E[z./z, ] = 1.t = 1....T the period used to estimate the model.
the likelihood function for e, = Htl/zzt
L) = Z=1%eXP {_éftIHt_lgt} (8)
(2m)2 |Hy|2
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Where:6 the parameters of the model and it was divided to :(¢. 1) = (¢1 ... Pp. ) ,P; = @gi- Qg v Agi Prie e - Brpi)

are the parameters of univariate GARCH model for i=1,...,n. ¢ = (a. b) the parameters in equation(6) after taking the

logarithm of (8) and substituting H, = D.R.D, became;

In(L(8)) = =221, (in(2m) + 21n|D,]) + In|R| +&.'D7 1R D7 e,) 9)
The DCC model can be estimated by two-steps. First, the parameter ¢ of the univariate GARCH models were

estimated for each series by replacing R, with the identity matrix I,,.
ln(Ll( ¢)) = —%Zle(nln(Zn) + 21In|D,|) + In|I,,| + &'D7 Y, D7 te, ) (10)
2
In(L,(¢)) = ¥, (—% . (ln(hit) + %c) +constant) (1)
In the second stage, the parameter iy = (a.b) were estimated using the correctly specified log-likelihood in

equation (9) given as follow:
ln(Lz(ll))) = —%Zle(nln(Zn) + 21n|D,|) + In|R,| + u,'R*u,) (12)

2.1.1.2 Multivariate Student’s t-distributed errors
The joint distribution of z, t = 1....T ,when the standardized errors, z,, were multivariate Student’s t distributed
was:

f(zv) = Ti=

() 2]
e L | B (13)

F(g)(n(v—z)) v=2

where v represents the degrees of freedom, the likelihood function for ¢, = Htl/zzt
T F(WTH) ec/H et _nTW
KO = e r()mw-2)"2|He /2 [1 = ] (14

So, taking the logarithm and substituting H, = DR, D, we obtained the following equation:
,p-lp-1p-1
In(L(6)) = X1y (In[r (23)] - [r (2)] - 2nn(v — 2)]) = In[ID.R, D[] - 21 [1 + LELE2E =) (15

2 2 v—2
The estimation of the parameter ¢ in the first step as the same in equation (11). In the second stage, the parameter
Y = (a.b.v) were estimated using the correctly specified log-likelihood in equation (15) given ¢ as follow:

In(L,()) = X7, (1n [r (””)] —In [r (g)] —Znfn(v — 2)]) —~In[IR,[] = In[ID,[] -~ 1In [1 + %ﬁjut] (16)

2 2

2.2 The Generalized Orthogonal-GARCH (GO- GARCH) model

The GO-GARCH model was as a generalization of the O-GARCH model of Ding ,1994 and Alexander 2001[9]. The
GO-GARCH model was considered as the suitable model to modeling the stock markets, because, it was supporting
the random vectors with probability distributions that were asymmetric and heavy- tailed. The starting point of GO-
GARCH model was the assumption that the vector observed process x, was defined by an n-vector of a linear
combination of n conditionally uncorrelated factors v, = (¥1¢,..., Yne-i = 1.....m)" [8,14]

xe =Wy, 17)
Where: W was a linear map that links uncorrelated factors with the observed variables was assumed to be constant

over time, and invertible. It was decomposed into an orthogonal matrix U and a symmetric positive definite matrix
21/2

W =zxY2y (18)
Where /2 was the symmetric positive definite square root of the unconditional covariance matrix X [9,16].

= WW'=sV2yu'sl/? (19)
instead of (18)

W = PAY?U (20)

where P and A denoted the matrices with, respectively, the orthogonal eigenvectors and the eigenvalues of 2= WW"’,
U is the orthogonal matrix of eigenvectors of WW'. P and A would estimated directly by means of unconditional
information. [14,15]

The factors y, could be specified as:

Ve = Htl/zm (21)
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Where:H, = diag(hy;. hy; ... hy) Was an nxn diagonal matrix of conditional variances, the random vector process
1, as the characteristics E(n,) = 0. E(n,2) = 1;

hence, the conditional covariance matrix of x, is:

3 = WHW' (22)

the h;. were assumed to follow a GARCH process, one possibility, as considered by van der Weide, was to assume
separate univariate GARCH (1,1):

hy = w;+ a;yi_1+ Bihieoy fork=12....n (23)
Where: w; =1—a; — B;,a;.5:= 0 a;+ B <1

2.2.1Estimators of GO-GARCH models

In this paper, we present four approaches were presented to estimate the Generalized Orthogonal GARCH models as
proposed by van der Weide 2002 [8,14]:

2.2.1.1Maximum likelihood (ML)estimator
In this method, we estimated the vector 6 of rotation coefficients that will identify the invertible matrix (W), and the

parameters «;, ﬁlfor n univariate GARCH (1,1) specifications. The log -likelihood function could be represented as:

L(6.a.p) = ——Z -1nlog(2m) + log|WyWy'| + log|H,| + y.'H; 'y, (24)
where WyW,' = PAP' was independent of 6 .The estimation procedure could be summarized as follows: in the first
step, P and A matrices were estimated directly by means of unconditional information, and the second step estimated

rotation coefficients of U and the parameters of the component univariate GARCH models using the conditional
information.

2.2.1.2 Nonlinear least square (NLS)estimator
The NLS method added a third step to the Maximum likelihood method. The second part of the link matrix U was

separated from estimation of the univariate GARCH models. We could identify U from the autocorrelation structure
of s,s,’ where s,= P'A"1/2x, is the standardized and orthogonalized version of x,, with a symmetric matrix, by non-
linear least-squares, suppose that we minimize [4]:

S(A) = —Z s tr(yeye — Iy — AWec1Ye-1' — LA (25)
Using yt =Us,.U'U = UU’ = [,And tr AB=tr BA:

S(A) = ‘Z =1 tr([U s¢s¢ U =1, — AU(S¢—1S¢—1' — In)U’A]Z) (26)
S(A) = —Z Litr([ses’ — Iy — B(S¢—1S¢-1" — 1) B]?) (27)
S(A) = 5*(B) (28)

The estimates 4, B minimize S(A) and S*(B) respectively from the first order conditions then B = U"AU . This
means that U is a matrix of eigenvectors of matrix B from which the linear mapping matrix W and its inverse matrix
W ~1can be computed.

2.2.1.3 Fast Independent Component Analysis (Fast-1CA) estimator
Broda and Paolella [16] introduced a two-step procedure for estimation of GO-GARCH model. The method was called

CHICAGO (Conditionally Heteroscedastic Independent Component Analysis of Generalized Orthogonal GARCH
models). This method used independent component analysis as the tool for the decomposition of a high-dimensional
problem into a set of univariate models. The ICA algorithm maximized the conditional heteroscedasticity of the
estimated components.

The estimation procedure can be summarized as follows. [2,8] First, the Fast-ICA was applied to the whitened
datan, = £7Y2%, where £71/2 was obtained from the eigenvalue decomposition of the OLS residuals covariance
matrix. Second, the conditional log-likelihood function was expressed as the sum of the individual conditional log-
likelihoods, derived from the conditional marginal densities of the factors, such,

GHy; (yi:16;) = GH (ylt, i Wi Pie \/h_ \/hL \/h_) plus, a term for the matrix W, estimated in the first step by Fast-
ICA:
L(%16.W) = TloglW™"| + XL, XL, log(GHy; (v:c16)) (29)

Where 6 :is a vector of unknown parameters in the marginal densities

10
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2.2.1.4 Method-of-moment (MM) estimator
The procedure of MM estimators involves the autocorrelation properties of the zero-mean matrix-valued

processes S; = s;s; — I, , Y; = y.y{ — L. For the process s, = Uy, the autocovariance and autocorrelation matrices
satisfy [8,9]:

T;(s) = E(UY,U'UY;;S") = E(S;S;—) = UT;(y»)U’ (30)
And hence :
$i(s) = [Lo()] 2T ()[T ()72 = Udp; () U’ (31)
The U; asa matrix of eigenvectors from the symmetric version:$;(s) = %(CT)L'(S) + §y(s)") Where:

$i(s) = [Fo(S)] ZF (S)[Fo(s)] (32)
With [ (s) = ; T 1 SeSe_i= =01 (sesy’ — L) (se_isi—; — I, ) and the standardized matrix [[o(s)] Y2 was

derived from the singular vaIue decomposition of the covariance matrix at lag zero.
In this paper, four estimators were compared of matrix U: ML, NLS, Fast-ICA and MM estimators.

3. Empirical Application

This section provides an empirical comparison of the performance between DCC models and GO-GARCH for
modeling the volatility dynamics among major indices in three groups. The first group contained three indices in
American market; the second group contained three indices in European markets, and the third group contained three
indices in Asian markets. The data and the estimated models were presented in the following subsection.

3.1 Data Description

The data for this study included the daily closing prices for major indices such as :The Dow (Dow Jones Industrial
Average-United States); The MERVAL (MERV- Argentina );The GSPTSE (The S&P/TSX Composite- Canada); The
FTSE100 (Financial Times Stock Exchange100- United Kingdom); The CAC 40 - France; The DAX30 -Germany ;
The Nikkei 225- Japan; The SSEC — china; BSE Sensex30 (BSESN-India).

The data was collected from investing.com and it covered the periods from 04/01/2012 to 29/12/2017 (totally 1396
observations). The daily log returns r, was calculated as follows:

Ty = In (%) (33)
Where p; ; is the value of index i at time t, for i = 1,2,..,5 . The analyses and estimations have been performed with R
software package. Figure (1) and (2) have presented the daily closing price and corresponding returns series
respectively to the three groups. It seems from the figure (1) that all series moves more over time and figure (2)
confirms that all the series have volatility clustering, which indicates that MGARCH model can be suitable for
analyzing the data.

11
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Figure (1) Daily closing prices
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Figure (2) Returns series for total of 1396 daily observations.
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The statistical summary statistic for the daily stock market returns are presented at the table (1):
Table (1) sum-mary statistics for daily stock market returns

sFiZ:liJs?css Dow |MERV | GSPISE | FTSE100| CAC40| DAX | Nikkei | SSEC | BSESN
Mean | 0.00049 |0.001724 | 0.000202 | 0.00022 |0.00036 |0.00054 |0.00070 |0.0003023 [0.0005468
Median | 0.00055 |0.001554 | 0.000687 | 0.00047 |0.00056 |0.00091 |0.00071 |0.0006807 |0.0005386
Min | -0.0364 |-0.12786 | -0.04391 |-0.04779 |-0.0838 |-0.0707 |-0.0825 |-0.088729 |-0.061197
Max | 0.03875 |0.125474 | 0.028965 | 0.03735 |0.04641 |0.04852 |0.07427 |0.056706 |0.0519037
Stdev | 0.00762 |0.020687 | 0.007371 | 0.00903 |0.01203 |0.01179 |0.01383 |0.0145061 [0.0092410
Skewness | -0.293 |-0.32543 | -0.52565 | -0.175 | -0.401 | -0.371 |-0.3034 |-0.107273 |-0.220455
Kurtosis | 5.5482 |7.465532 | 5.509809 | 52944 |6.2968 |5.3000 |6.9885 |10.80004 |5.890221
J Bera | 397.34 | 11837 | 43038 | 313.09 |669.06 |339.46 |946.08 | 3803.9 | 496.84
P-value | (0.0000) |(0.0000) | (0.0000) | (0.0000) [(0.0000) |(0.0000) |(0.0000) | (0.0000) |(0.0000)
QX(10) | 43200 | 11656 | 347.24 | 470.15 |163.23 |201.13 |170.77 | 486.95 | 46.053
P-value | (0.0000) |(0.0000) | (0.0000) | (0.0000) [(0.0000) |(0.0000) |(0.0000) | (0.0000) |(0.0000)
ARCH | 1875 | 93.747 | 159.25 | 19439 | 86.003 | 108.73 | 90.724| 197.1 | 39.071
Lag(10) | (0.000) | (0.000) | (0.000) | (0.000) |(0.000) | (0.000) | (0.000)| (0.000) | (0.000)
ADE | 11229 [-10897 | -12401 [ -12.266 [-12.155 |-11.987 [-11.665 | -10.596 [-11.597
0.01) | (0.01) 001 | (001 | (0.01) | (0.01) | (0.01) (0.01) | (0.01)

From table (1). It’s noted that the returns series had a positive mean. Based on the magnitude of the unconditional
standard deviations, the MERV was more volatile in American returns, while CAC40 in European returns and SSEC
in Asian returns, we found that the American returns were perhaps slightly less volatile than others. The MERV
appeared as an exception. Returns had negative skewness which supported that the series had asymmetric distributions
(long left tail in the empirical distributions) and very high kurtosis which indicated that the empirical distribution had
more weight in the tails. Thus it was leptokurtic, while GSPISE had the largest skewness in American returns, CAC40
and Nikkei 225 in European and Asian returns respectively, the MERV had the largest kurtosis in magnitude in
American returns. CAC40 and SSEC in European and Asia return respectively. In addition, the Jarque-Bera (JB)* test
clearly lead to a rejection of the assumption of normality for all returns at the 5% significance level which combined
the skewness and kurtosis results. There was also a strong evidence of autocorrelation in returns, as it was indicated
by Ljung-Box? Q-Statistics on the squared residuals i 10 lags at the 5% significance level. Moreover, the result of
ARCHS test indicated strong evidence of ARCH effect. It is imperative when modeling such a series that it must be
stationary, the Augmented Dicker-Fuller (ADF) test was applied to the series, the test results showed that the null
hypothesis of the unit root could be rejected at 5% level of significance and it could be concluded that the all returns
were stationary. The unconditional correlation matrix among returns were given in table (2). We observed the
following conclusions: Firstly, the correlation between returns was high in European returns, with average correlations
ranging from 0.76 to 0.91, compared to 0.37 to 0.70 for the American returns; Secondly, the correlations among the
three returns in Asian were lower than those in American and European.

Y Invented by Jarque and Bera (1980) and used to test the normality:

n (K — 3)?
JB=3<52+T)

Where: S is the skewness, K is the kurtosis and n the sample size.
2 The Ljung Box test checks if the autocorrelations are different from zero or not.

m ﬁz
On =n(n+2) )
k=1

n—
Where n the length of the series m: number of lags and f)k the estimated autocorrelation for lag k.

3 The test can be used to determine if there is volatility clustering in the data, and then to determine if there is any
ARCH effects left in the residuals. The test statistic is :

n
g =c +Z ael i+ e
i=1

~y2
g~ Xmep

13
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Table (2) unconditional correlation matrix among returns for Americas, European and Asia returns

Dow | MERV | GSPISE FTSE | CAC DAX Nikkei | SSEC BSESN

Dow 1 0.37496 | 0.69957 | FTSE 1 ]0.81583 | 0.76001 | Nikkei 1 0.20378 | 0.32639

MERV 1 0.40707 | CAC 1 0.90928 | SSEC 1 0.17539
GSPISE 1 DAX 1 BSESN 1

3.2 Model Estimation:

This section was divided into two subsections, the first subsection estimated DCC-GARCH model (with Gaussian and
Student’s t distributed errors). The second subsection, is a comparson among four different estimators in GO-GARCH
models.

3.2.1 DCC-GARCH models
In the first stage of DCC estimation, the parameter ¢ of the univariate GARCH models were estimated for each series.
Empirical research had shown that most return series were well modelled by the GARCH (1,1), to investigate this, we
computed the Akaike Information Criterion(AIC)* and Schwartz-Bayesian Information Criterion (BIC)® [1]
to the GARCH models with p,q < 2 ,we found that the GARCH (1,1) had the smallest AIC and BIC among all models.
So, we consided it as the suitable model. In the second stage, the parameter y were estimated using the specified
Maximum-likelihood.

Parameter estimation of DCC-GARCH model for the three groups under two distributional assumptions: Gaussian
and Student’s t, were provided in table 3,4 and 5.

Table (3): Parameter estimation of DCC-GARCH model for Americas group.
Gaussian distributed errors Student’s t distributed errors
Variable Estimate | S.Error t-value Signif Estimate | S. Error | t-value Signif
Mu 0.000743 | 0.000173 | 4.587415 | 0.000018 | 0.000803 | 0.000150 | 5.34143 | 0.000000
Omega | 0.000005 | 0.000001 | 5.631471 | 0.000000 | 0.000003 | 0.000003 | 1.16234 | 0.245096
Alphal | 0.185317 | 0.022554 | 8.216583 | 0.000000 | 0.195131 | 0.034058 | 5.73458 | 0.000000

Dow betal 0.732162 | 0.032016 | 22.86837 | 0.000000 | 0.770529 | 0.046826 | 16.45521 | 0.000000
Shape 5.056588 | 0.672924 | 7.51436 | 0.000000

Mu 0.002362 | 0.000539 | 4.383890 | 0.000012 | 0.002056 | 0.000451 | 4.56271 | 0.000005

Omega | 0.000062 | 0.000035 | 1.767365 | 0.077167 | 0.000056 | 0.000024 | 2.33185 | 0.019708

MERV Alphal | 0.155744 | 0.046646 | 3.338834 | 0.000841 | 0.189167 | 0.054544 | 3.46818 | 0.000524

betal 0.703791 | 0.110938 | 6.343978 | 0.000000 | 0.693246 | 0.095326 | 7.27234 | 0.000000
Shape 4.766202 | 0.620956 | 7.67559 | 0.000000
Mu 0.000344 | 0.000165 | 2.091059 | 0.036523 | 0.000566 | 0.000151 | 3.75519 | 0.000173
Omega | 0.000001 | 0.000015 | 0.057554 | 0.954104 | 0.000001 | 0.000001 | 0.70083 | 0.483408
GSPISE | Alphal | 0.080824 | 0.299502 | 0.269863 | 0.787266 | 0.087375 | 0.018310 | 4.77189 | 0.000002
betal 0.904108 | 0.307726 | 2.938033 | 0.003303 | 0.900808 | 0.019516 | 46.15691 | 0.000000
Shape 6.925499 | 1.322994 | 5.23472 | 0.000000
DCC Alphal(a) 0.030799 | 0.012301 | 2.503740 | 0.012289 | 0.011068 | 0.006671 | 1.65915 | 0.097087
DCC beta (b) 0.862526 | 0.090133 | 9.569474 | 0.000000 | 0.977605 | 0.019211 | 50.88665 | 0.000000

Mshape 6.496963 | 0.499646 | 13.00314 | 0.000000
Inf. Criteria
Akaike -20.042 -20.236
Bayes -19.979 -20.157
Shibata -20.043 -20.236
Hannan-Quinn -20.019 -20.206
Log-Likelihood 13996.63 14135.39

We can see from Table (3) that the estimated coefficients of the conditional mean (p) are positive and significant at
a=5% level of significance for all returns. The Short-term persistence was evident in each variable as the estimated

4 AlIC=-2In(L)+2k

5 BIC=-2In(L)+kIn(n)

L is the maximized value of the likelihood function for the estimated model, k: the number of Parameters to be
estimated, n: sample size.
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coefficient on the o term is statistically significant at a=5% except GSPISE (Gaussian) and in each case, the short-
term persistence was less than the long-term persistence (). The estimated coefficient () was statistically significant
at a=5% for each variable which indicated the importance of long-term persistence. The estimated parameters
indicated that the variables showed volatility clustering since a+ B is close to 1 for all variables. Also, the GARCH
parameter (o) measured the reaction of conditional volatility to market shocks. If it is relatively large (e.g. above 0.1)
then volatility is very sensitive to the market events. In our case only Dow and MERYV (Gaussian)returns above 0.1,
while parameter (3) measures the persistence in conditional volatility irrespective of anything happening in the market,
if it is relatively large then volatility takes a long time to be ended [11].The results also showed the estimated
parameters (Gaussian distributed error) ¢ = (a.b) are a = 0.030799, b = 0.862526 and both of them are statistically
significant at a=5% , which indicated that the conditional correlations were not constant, where (a) was the impact of
past shocks on current conditional correlations, while (b) the impact of previous dynamic conditional correlations, the
value of a 0.030799 related to the Conditional correlation parameters (with covariance targeting). The sum of aand b
was less than one, which mean that dynamic conditional correlations came back.

The estimated DCC model is as follows:

Q; = (1 —0.030799 — 0.862526)Q + 0.030799 u,_; 1t,_, + 0.862526Q,_;

The table also showed the estimated parameters (Student’s t distributed error) i = (a.b.v) are a = 0.011068
(significant at 10%), b = 0.977605, degrees-of-freedom (v) = 6.496963 and the estimated coefficients of shape
parameter provide values more than 5 for all returns except MERV and all are significant. From tables (2) we could
conclude that the DCC-GARCH with student’s t-distribution is better than Gaussian distributed error according to
Akaike information criterion (AIC), Schwartz Bayesian criterion (SBC), Shibata criterion and Hannan-Quinn criterion
(HQ).

The result concluded that the Student-t distribution is better to the financial data which suffered from fat-tailed
distribution.

Table 4: Parameter estimation of DCC-GARCH model for European group.
Gaussian distributed errors Student’s t distributed errors
Variable Estimate | S. Error | t-value Signif Estimate S.Error t-value Signif
Mu 0.000365 | 0.000209 | 1.74419 | 0.081126 | 0.000423 | 0.000194 | 2.175399 | 0.029600
Omega | 0.000004 | 0.000002 | 2.47300 | 0.013399 | 0.000004 | 0.000012 | 0.340379 | 0.733571
Alphal | 0.121276 | 0.016241 | 7.46711 | 0.000000 | 0.149123 0.031999 | 4.660295 | 0.000003

FTSE Betal 0.825170 | 0.024949 | 33.07469 | 0.000000 | 0.808520 | 0.117772 | 6.865129 | 0.000000
Shape 5.930074 | 2.008420 | 2.952606 | 0.003151

Mu 0.000521 | 0.000264 | 1.97726 | 0.048012 | 0.000723 | 0.001195 | 0.604883 | 0.545257

Omega | 0.000001 | 0.000006 | 0.23908 | 0.811046 | 0.000003 | 0.000068 | 0.038556 | 0.969245

CACA40 Alphal | 0.063253 | 0.058606 | 1.07929 | 0.280458 | 0.109009 | 0.794947 | 0.137127 | 0.890930

Betal 0.929112 | 0.061096 | 15.20752 | 0.000000 | 0.880610 | 0.833663 | 1.056314 | 0.290825
Shape 5.447248 | 9.676012 | 0.562964 | 0.573459
Mu 0.000762 | 0.000289 | 2.63438 | 0.008429 | 0.000842 | 0.000235 | 3.582029 | 0.000341
Omega | 0.000001 | 0.000004 | 0.33724 | 0.735933 | 0.000001 | 0.000001 | 0.931197 | 0.351752
DAX Alphal | 0.055826 | 0.038594 | 1.44650 | 0.148037 | 0.081708 | 0.013918 | 5.870487 | 0.000000
Betal 0.933696 | 0.043930 | 21.25432 | 0.000000 | 0.915101 | 0.014100 | 64.902317 | 0.000000

Shape 5219335 | 0.772198 | 6.759063 | 0.000000
DCC Alphal(a) 0.031204 | 0.014449 | 2.15951 | 0.030811 | 0.043266 | 0.018252 | 2.370518 | 0.017763
DCC beta (b) 0.936581 | 0.040407 | 23.17875 | 0.000000 | 0.909863 | 0.055213 | 16.479126 | 0.000000
Mshape 5.780679 | 0.444772 | 12.996955 | 0.000000
Inf. Criteria
Akaike -21.775 -21.984
Bayes -21.712 -21.905
Shibata -21.776 -21.984
Hannan-Quinn -21.752 -21.955
Log-Likelihood 15205.33 15354.85

We can see from Table 4 that the estimated coefficients of the conditional mean (1) are positive and significant
at a=5% and 10% level of significance for all returns except CAC40. The Short-term persistence is evident in each
variable as the estimated coefficient on the (o) term is statistically significant at a=5% except CAC40 and DAX30
and in each case, the short-term persistence is less than the long-term persistence (B). The (B) is statistically significant
at a=5% except for CAC40 which indicate the importance of long-term persistence. The estimated parameters

15



IJRRAS 37 (1) ® Oct 2018 Rania e Using Go-Garch for Modeling the Volatility Dynamics

indicated that the variables showed volatility clustering since a+ 3 was close to 1 for all variables. Also, the value of
the parameter (o) indicates that the volatility is very sensitive to the market events. (B) measures the persistence in
conditional volatility irrespective of anything happening in the market. The results also showed the estimated
parameters ¢ = (a.b) are a=0. 031204, b = 0. 936581 and both of them were statistically significant, which indicated
that the conditional correlations were not constant. The sum of a and b was less than one, so, the dynamic conditional
correlations came back. The estimated DCC model is as follows:

Q, = (1 —0.031204 — 0.936581)Q + 0.031204u,_; 1t,_, + 0.936581Q,_;

The results also showed the estimated parameters ¥ = (a.b.v) are a = 0.043266, b = 0.909863, degrees-of-
freedom (v) = 5.780679 and the estimated coefficients of shape parameter provided values more than 5 for all
returns. Also, we concluded that the DCC-GARCH with student’s t-distribution was better than gaussian distributed
error according to (AIC), (SBC), Shibata and (HQ)criteria, the results indicated that the t distribution improves the
results, this finding can be explained by the weak asymmetry in the distribution of the CACA40 returns.

Table 5: Parameter estimation of DCC-GARCH model for Asia group.

Gaussian distributed errors Student’s t distributed errors
Variable Estimate | S. Error | t-value Signif Estimate S. Error t-value Signif
Nikkei | mu 0.000907 | 0.000337 |2.690032 |0.007145 | 0.001083 | 0.000292 | 3.712727 | 0.000205

225 Omega 0.000004 | 0.000007 |0.583053 |0.8559857 | 0.000004 0.000005 | 0.740755 | 0.458842
Alphal 0.122844 | 0.034634 | 3.546909 |0.000390 | 0.116628 0.049934 | 2.335622 | 0.019511

Betal 0.862646 | 0.054142 |15.933065 | 0.000000 | 0.872151 0.055049 |15.843073 | 0.000000
Shape 5.882302 0.932788 | 6.306148 | 0.000000
SSEC mu 0.000359 | 0.000408 |0.880751 |0.378453 | 0.000446 0.000209 | 2.135642 | 0.032709

Omega 0.000001 | 0.000015 | 0.037253 |0.970283 | 0.000001 0.000002 | 0.487268 | 0.626069
Alphal 0.054891 | 0.182215 | 0.301246 |0.763227 | 0.055052 0.014457 | 3.808010 | 0.000140

betal 0.943115 | 0.168371 | 5.601413 |0.000000 | 0.943948 | 0.012496 |75.538051 | 0.000000
Shape 3.594567 | 0.398294 | 9.024901 | 0.000000
BSESN | mu 0.000717 | 0.000224 |3.204140 |0.001355 | 0.000688 | 0.000209 | 3.295165 | 0.000984

Omega 0.000001 | 0.000002 | 0.445746 |0.655781 | 0.000001 0.000001 | 1.308837 | 0.190590
Alphal 0.040058 | 0.016329 | 2.453121 |0.014162 | 0.041698 0.005482 | 7.606607 | 0.000000

Betal 0.951848 | 0.018350 |51.872406 | 0.000000 | 0.947938 0.007539 |125.73905 | 0.000000
Shape 6.428953 1.097468 | 5.857986 | 0.000000
DCC Alphal(a) 0.060361 | 0.031442 |1.919756 |0.054889 | 0.082474 0.026377 | 3.126782 | 0.001767
DCC beta (b) 0.000001 | 0.382427 |0.000004 |0.999997 | 0.000003 0.352911 | 0.000009 | 0.999993
M shape 5.898653 0.381676 |15.454604 | 0.000000
Inf. Criteria
Akaike -18.797 -18.982
Bayes -18.733 -18.903
Shibata -18.797 -18.982
Hannan-Quinn -18.773 -18.952
Log-Likelihood 13128.05 13260.67

We can see from Table (5) that the estimated coefficients of the conditional mean (u) are positive and significant
at the a=5% level of significance for all returns except SSEC returns.

The Short-term persistence is evident in each variable as the estimated coefficient on the (o)) term is statistically
significant at a=5% except SSEC under Gaussian distribution and in each case, the short-term persistence is less than
the long-term persistence(p). The (B) is statistically significant at #=5% which indicates the importance of long-term
persistence. The parameter estimates indicate that the variables appear volatility clustering since o+ B is close to 1 for
all variables. If (o) is relatively large then volatility is very sensitive to the market events. In our case Nikkei 225 only
above 0.1, if (B) is relatively large so the volatility takes a long time to end. The estimated parameters { = (a.b) are
a = 0.0603612, b = 0.00001 and both of them are not statistically significant, the results also show the estimated
parameters ¥ = (a.b.v) are a = 0.082474, b = 0.00003 (not significant)and degrees-of-freedom (v) =5.898653 and
the estimated coefficients of shape parameter provide values more than 5 except SSEC returns .We concluded that the
DCC-GARCH with student’s t-distribution was better than gaussian distributed error according to criteria but DCC
beta (b) not significant.
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The conditional correlation for the three groups according to DCC-GARCH as we see in figure (3)

Americas European -- Asia
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Figure (3) The Conditional Correlation

The following subsection introduced the results from GO-GARCH maodels.

3.2.2 GO-GARCH models
This subsection aimed to compared four estimators for GO-GARCH models, for modeling the volatility dynamics
among major indices in three groups. Factors or Components were estimated by estimators' Maximum likelihood
(ML), Nonlinear least square (NLS), Fast Independent Component Analysis (Fast-ICA) and Method-of-moment
(MM) with a formula for unobserved components as GARCH (1,1). The four estimator's parameters are shown in
Table 6,7,8. The analysis of residuals performed after the estimation of the parameters was done using the multivariate
portmanteau test introduced by Hosking (1980)8, Li & McLeod (1981)7 and ARCH tests.

Table 6: Parameter estimation of GO-GARCH model for Americas group.

ML NLS ICA MM

Variable Estimate | S. Error | Estimate S. Error | Estimate | S.Error | Estimate | S.Error
Omega |0.027573 " | 0.011629 | 0.1389843" | 0.049099 |0.034565" | 0.013614 |0.0949297"| 0.019830
Dow Alphal | 0.075543" | 0.014251 | 0.138635" | 0.031194 |0.062145"| 0.013896 |0.1810295"| 0.027951
Betal | 0.908925" | 0.017694 | 0.726779 " | 0.071384 |0.906351 | 0.021620 |0.7266575"| 0.038128
Omega | 0.060444" | 0.023661 | 0.0964502" | 0.020078 |0.013108"| 0.006247 |0.0992943"| 0.036970
MERV Alphal | 0.106186" | 0.020491 | 0.1782547" | 0.028201 |0.034707"| 0.008811 |0.1277830"| 0.026680
Betal 0.829207" | 0.039717 | 0.7282298" | 0.038486 |0.949868" | 0.012590 |0.7792547"| 0.055034
Omega | 0.0015460 | 0.001648 | 0.012347 " | 0.005727 |0.033978"| 0.014635 [0.0121025"| 0.005516
GSPISE Alphal | 0.024579" | 0.005502 | 0.048644 " | 0.009696 |0.069695 | 0.014201 |0.0507091"| 0.009850
Betal | 0.973269" | 0.006072 | 0.9389625" | 0.012508 |0.909841 “| 0.018574 |0.9372178"| 0.012319
Lags 10 |102.08127 (0.1808149) | 95.86898(0.31641843) | 97.293112(0.2813079) |115.67410(0.0354877)
Hosking Lags 20 | 220.50556(0.0213090) | 207.17079(0.0806904) | 205.65390(0.0921792) |237.33317(0.0026833)
square10| 124.68243(0.0091269) 126.22705(0.00000) 120.10082(0.0186874) | 78.08437(0.81067423)
square2 | 212.99211(0.0467395) 214.32663(0.00000) 226.82772(0.0102786) | 176.85000(0.5524291
Lags 10 | 102.1069 (0.1803532) | 95.92495(0.3149972) 97.32545(0.2805368) | 115.6545(0.0355845)
Li& Lags 20 | 220.1738(0.0221026) | 206.955540(0.0822492) | 205.45112(0.0938069) |236.9311(0.00283319)
McLeod S10 124.5891 (0.009266) 126.1114(0.0072222) | 119.9864(0.01901196) | 78.12054(0.809871)
Lags 20 | 212.8282(0.0474996) | 214.1609(0.04160876) | 226.4314(0.01077842) | 176.71258(0.555326)

ARCH Lags 10 36.068(0.00000) 22.412(0.01314) 26.1(0.003608) 6.8838(0.7364)

Lags 20 49.902(0.000228) 33.1975(0.0321) 37.761(0.00947) 19.031(0.5198)

P-values in parentheses * indicate significance at 5% level

We observed from Table (6) that the four estimators were not that different from each other. Judging by our
diagnostics, using the Hosking (1980), Li & McLeod (1981) and the ARCH test, we conclude that the GO-GARCH
with MM method fits the Americas returns better than other methods.

8 For more details see Hosking, J.R.M, (1980).
" For more details see W. K.Li and A. I. McLeod, (1981).
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The conditional correlations between each pair according to MM method were shown in figure (4) Which we
found that the GO-GARCH correlations for Dow and MERYV lie between 0.2 - 0.6 almost, whereas the correlations
for Dow and GSPISE lie between 0.6 - 0.9 almost, and between 0.4 - 0.65 for MERV and GSPISE.

Conditional Correlations of Americas

Time

T T
1200 1400

Figure (4) The Conditional correlation between each pair according to MM method

Table7: Parameter estimation of GO-GARCH model for European group.

ML NLS ICA MM
Variable Estimate S. Error | Estimate S. Error | Estimate S. Error | Estimate S. Error
Omega 0.111272" 0.0251338 | 0.148613" | 0.046534 0.040766" | 0.018467 0.16907 ~ 0.059491
FSTE | Alphal 0.172436 " | 0.0296006 |0.156131" | 0.031328 | 0.052488" | 0.012003 | 0.14311" | 0.031542
Betal 0.707372~ | 0.0467048 |0.689184" | 0.071147 0.937448" | 0.014775 0.67969" 0.085756
Omega 0.014481" | 0.0071277 |0.007250" | 0.003703 0.284662" | 0.143509 0.39925" | 0.073149
CAC Alphal 0.041809" 0.0122142 |0.058312" | 0.011845 0.081680" | 0.020079 0.17482" 0.035695
Betal 0.942911" | 0.0179257 |0. 936085 | 0.012876 0.904203" | 0.025321 0.42240" 0.089007
DAX Omega 0.017749 " | 0.0087909 |0.060249" | 0.055285 0.330225" | 0.102273 | 0.01113 " | 0.005045
Alphal 0.041647 * | 0.0098385 |0.070521" | 0.037225 0.122476" | 0.023934 0.06254" | 0.014326
Betal 0.942937 " | 0.0147930 |0.868885" | 0.090734 0.828555" | 0.034284 0.92682" 0.017129
Lags 10 140.62505 (0.00000) 129.27067(0.0042313) 123.44304(0.01113645 | 143.84187(0.0000)
Hosking ™ 35520 231.19311(0.000000) 230.07616(0.0069033) | 210.25607(0.0608330) 243.34357(0.00000)
s 10 77.80125(0.8168985) 126.262847(0.006627) 136.57211(0.0011282) 164.4068(0.00000)
s20 160.43133(0.8498580) 221.74015(0.0185705) | 207.20659(0.0804336) 259.8117(0.00000)
Lags 10 140.5356(0.0005249) 129.2369(0.0042561) 123.4331(0.01115404) 143.7391(0.000028)
Li& Lags 20 231.1138(0.00605901) 229.9380(0.00702332) 210.2927(0.060623) 243.1642(0.001190)
McLeod | 510 77.90841( 0.814556) 126.5745(0.00668756) 136.5027(0.0011431) 164.2917(0.0000)
s20 160.59729(0.954417) 221.5954(0.0188747) 207.3498(0.07941237) 259.6360(0.00000)
ARCH | Lags 10 11.564(0.3153) 34.032(0.0001824) 427.21(0.0000) 43.613(0.00000)
Lags 20 17.661(0.6097) 39.241(0.006221) 522.25(0.00000) 48.134(0.000407)

P-values in parentheses

* indicate significance at 5% level

Judging by our diagnostics, the GO-GARCH with ML method fits the European returns better than other
methods. The conditional correlations between each pair according to ML method are shown in figure (5):
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Figure (5) The Conditional correlation betwéen each pair according to ML method

From figure (5) we observe that the GO-GARCH correlations for FTSE and CACA40 lie between 0.78 - 0.9
almost, whereas the correlations for FTSE and DAX lie between 0.72 - 0.86 almost, and between 0.9 - 0.95 for

CAC40 and DAX.

Table (8): Parameter estimation of GO-GARCH model for Asia group.

ML NLS ICF MM
Variable Estimate|S.Error | Estimate | S.Error |Estimate |S.Error |Estimate S.Error
Nikkei Omega [0.009593 [0.005149| 0.001866 | 0.001039 | 0.003431 |0.002929 | 0. 025546" | 0.009712
225 Alphal ]0.044883%/0.009791|0.046883"| 0.007734 | 0.038858" |0.007779|0.136356" | 0.023814
Betal |0.946536%0.012129(0.951792"| 0.007143 | 0.959651" |0.007814 | 0.845801" | 0.027551
Omega [0.00314970.001257|0.021093"| 0.007846 | 0.004459 |0.002707 | 0.002625" | 0.001096
SSEC Alphal ]0.053629%/0.008426|0.104779"| 0.017964 | 0.057069" |0.012082 | 0.054680" | 0.008904
Betal |0.943646%0.007832(0.878784"| 0.020360 | 0.937817" |0.013469|0.943279" | 0.008103
BSESN Omega |0.01637870.007476| 0.013025 | 0.006702 | 0.006686 |0.004196|0.009738 | 0.005274
Alphal ]0.116792%/0.023757|0.056826" | 0.012973 | 0.043961" |0.009624 | 0.041439" | 0.009486
Betal |0.872259%0.026605|0.931183"| 0.016657 | 0.950402" |0.011240|0.949419" | 0.012115
Lags 10 |116.7799(0.03038) |116.51455 (0.031545) [122.05986(0.013844) 122.22205(0.01349)
Lags 20 |213.4013(0.04489) |203..2284(0.113137) |218.73734 (0.025842) | 211.4143(0.054194)
Lags 10 |105.666(0.124024) | 222.7338 (0.00000) | 330.5656(0.00000) 103.26828(0.16028)
Hosking | Lags 20 [207.9757(0.07507) | 383.4348 (0.00000) | 635.1853(0.00000) 196.89506(0.184353)
Lags 10 [116.7748 (0.03040) | 116.5096(0.031567) | 122.0259(0.013917) 122.2101(0.013524)
Li& Lags 20 |213.3019(0.04533) | 203.2521(0.112917) | 218.5986(0.026230) | 211.4540(0.054285)
MclLeod Lags 10 |105.7349(0.12308) | 222.4154(0.00000) 329.8167(0.00000) 103.3356(0.159172)
Lags20 | 207.8368 (0.0760) | 382.2389(0.00000) 631.8454(0.00000) 196.8636(0.184769)
ARCH Lags 10 | 6.5283(0.7691) 79.545(0.0000) 93.246 (0.00000) 6.1109(0.8059)
Lags20 | 17.886(0.5949) 110.43(0.0000) 124.21(0.00000) 16.071(0.7122)
MSE? 0.9846143 1.055272 0.9400385 0.9773943
MAE?® 0.7343189 0.74839 0.7065218 0.7297305
P-values in parentheses * indicate significance at 5%
level

We observe that ML estimator performs either as good as the MM estimator in estimate the Asian But, The MM
estimator is considerably more efficient than the ML estimator according to performance measures MSE and MAE.
The conditional correlations between each pair according to MM method are shown in figure (6):

& Mean Square Errer, MSE = %Z(ﬁn — yn)?
° Mean Absolute Error MAE = %Zlf’n — Ynl

19



IJRRAS 37 (1) ® Oct 2018 Rania e Using Go-Garch for Modeling the Volatility Dynamics

Conditional Correlations of Asia
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Figure (6) The Conditional correlation between each pair according to MM method

From figure (6) we observe that the GO-GARCH correlations for Nikkei and SSEC lie between 0.1 - 0.7
almost, the correlations for Nikkei and BSESN lie between 0.3 - 0.55 almost, and between 0.15 - 0.45 for SSEC and
BSESN.

We concluded that, for the GO-GARCH models with four estimators, each factor the estimated short-run
persistence (o) was considerably less than the long-run persistence (B). In the table (9) we presented the Orthogonal
Matrix U for our models

Table (9) Orthogonal Matrix
Americas European Asia
[1] [2] [3] [1] [2] [3] [1] [2] [3]
[1.] | 0.961101 |-0.098775 |-0.257930 | [1,] | 0.580817 |-0.794972| 0.175132 |[1,] | 0.993273 | 0.103172 | 0.052579

[2,] | 0.101737 | 0.994809 | -0.001874 | [2,] | 0.581120 | 0.254265 | -0.773077 |[2,] | -0.104535 | 0.994234 | 0.023876
[3,] | 0.256777 | -0.024439 | 0.966161 | [3,] | 0.570044 | 0.550789 | 0.609656 |[3,] | -0.049812 |-0.029211 | 0.998331

4. Summary and Conclusions

The paper aims to compare between DCC models and GO-GARCH for modeling the volatility dynamics among major

indices in three groups; the first group contains three indices in the American market; the second group contains three

indices in the European market and the third group contains three indices in Asian market. We estimated DCC-

GARCH models with different assumptions of the error distribution; Gaussian and Student-t. The factors or

components in GO-GARCH model were estimated by four estimators: Maximum likelihood, Nonlinear least square,

Fast Independent Component Analysis and Method of Moment. The results indicated that:

e The time series of financial returns under study were characterized by asymmetry and volatility clusters.

e The DCC-GARCH with Student-t distribution was better to the financial data which suffer from fat-tailed
distribution.

e The GO-GARCH models were most effective for modeling the volatility dynamics among indices in the three
groups compared to DCC model; especially when the time series of indices under study had asymmetry and
volatility clusters.

e In our case, we concluded that the GO-GARCH model estimated with Maximum likelihood is the best estimator
in European group, and MM estimator performed better in estimate the American and Asian groups.

e The results of the conditional correlations between indicators in each group have an economic significance which
providing investors with new ways to diversify investment portfolios and reduce the risk.
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