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Abstract 

Generalized Orthogonal GARCH (GO-GARCH) model, one of multivariate GARCH model, has been unused 

enough for modeling the volatility dynamics among indices in stock markets. Thus, this paper compares between 

Dynamic Conditional Correlations (DCC) models and GO-GARCH for modeling the volatility dynamics among major 

indices in three groups. The first group contains three indices in Americas market, namely, Dow Jones Industrial 

Average, MERVA and S&P/TSX. The second group consisted of three indices in European market, namely, FTSE100, 

CAC40 and DAX30, and the third group contained three indices in Asian market, namely, Nikkei225, Shanghai and 

BSE Sensex 30 (BSESN). The DCC-GARCH models were applied with different assumptions of the error distribution; 

Gaussian and Student-t. The factors or components in GO-GARCH model were estimated by four estimators': 

Maximum Likelihood (ML), Nonlinear Least Square (NLS), Fast Independent Component Analysis (Fast-ICA) and 

Method of Moment (MM). The results indicate that the GO-GARCH models are most effective for modeling the 

volatility dynamics among indices in the three groups compared to DCC model; especially when the time series of 

indices under study have asymmetry and volatility clusters. Also, the performance tests suggested that the GO-

GARCH model estimated with Maximum Likelihood is the best estimator in European group, and Method of Moment 

estimator performs better in estimating the Americas and Asian groups. The results of the conditional correlations 

between indicators in each group have an economic significance which provides investors with new ways to diversify 

investment portfolios and reduce the risk. 
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1. Introduction 

Modeling the volatility dynamics among major indices in stock markets is an important issue, which provides investors 

with new ways to diversify investment portfolios and reduce the risk. In addition, the Multivariate Generalized 

Autoregressive Conditional Heteroskedasticity GARCH model (MGARCH), an extension of the univariate GARCH, 

is considered as one of the most useful tools for analyzing and forecasting the indices in stock markets.  

The GO-GARCH model is a generalization of the Orthogonal GARCH model (O-GARCH) and proposed by van der 

Weide (2002). In this model, we can express the vector of indices as a non-singular linear transformation of factors 

that have a GARCH-type conditional variance specification. The GO-GARCH model is characterized by the 

simplicity and robustness of the procedures for estimating the parameters. The model used a highly efficient and less 

intensive parameter for estimation approach to decompose the variance-covariance matrix into orthogonal sources of 

volatility. The model basically consisted of two parts, the first part, a set of conditionally uncorrelated univariate 

GARCH processes and the second part is a linear map which connects the factors to the observed data. 

In this paper, we compare between DCC models and GO-GARCH for modeling the volatility dynamics among major 

indices in three groups. The first group contained three indices in Americas market. The second group contained three 

indices in the European market, and the third group contained three indices in Asian market. The factors in GO-

GARCH model were estimated by four estimators: Maximum likelihood, Nonlinear least square, Fast Independent 

Component Analysis and Method of Moment. 

This paper was organized as follows. In Section 2, some MGARCH models were reviewed. An empirical comparison 

of the models was given in Section 3. Finally, a summary and a conclusion were provided in Section 4. 

 

2. Multivariate GARCH Models 

Several literatures dealt with univariate GARCH models, but interaction between markets sometimes, needed to 

use the MGARCH models, which were defined as: 

𝑦𝑡 = 𝜇𝑡 + 𝜀𝑡                                                                                         (1) 

𝜀𝑡  = 𝐻𝑡
1/2

𝑧𝑡                                                                                                                               (2) 
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Where 𝑦𝑡 : n× 1 vector of stochastic process at time t, 𝜇𝑡: n× 1 vector of conditional mean, 𝜀𝑡: n× 1 vector of shocks 

,or innovation of the series at time t, 𝐻𝑡: n× n matrix of conditional variances of  𝜀𝑡 at time t, 𝑧𝑡: 1×  n vector of iid 

error such that 𝐸(𝑧𝑡) = 0. 𝑣𝑎𝑟(𝑧𝑡) = 𝐼𝑛,where is an identity matrix of order n.[12] 

The MGARCH models can be divided into four types [15].  

 Models of the conditional covariance matrix; for example, VEC and BEKK models, these models were 

characterized by the conditional covariance matrix  𝐻𝑡  was modeled directly.  

 Factor models; these models were characterized by, the conditional covariance matrix was motivated by 

parsimony, the process 𝜀𝑡 was assumed to be generated by a small number of unobserved heteroskedastic factors, 

for example, the Orthogonal GARCH and GO-GARCH model. 

 Models of conditional variances and correlations; The models were built on the concept of modeling the 

conditional variances and correlations instead of straightforward modeling the conditional covariance matrix. For 

example, Dynamic Conditional Correlations model and the Constant Conditional Correlations model. 

 Nonparametric and semiparametric approaches; these models were alternatives to the parametric estimation 

of the conditional covariance structure.  

The following subsections is giving a brief introduction to the some MGARCH models which will be used in this 

paper. This paper focus on the GO-GARCH and DCC-GARCH models. 

 

2.1 The DCC-GARCH model    
The Dynamic Conditional Correlation model (DCC) was proposed by Engle in 2002. It is a non-linear combination 

of univariate GARCH models if we have 𝑦𝑡  returns with expected value 0 and covariance matrix  𝐻𝑡 .Thus, the DCC-

GARCH model is defined as: [3,5]  

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                           (3) 

Where, 𝐷𝑡  : n× n diagonal matrix of conditional standard deviation of 𝜀𝑡, at time t,= 𝑑𝑖𝑎𝑔(ℎ1𝑡  ……….

1

2 . ℎ𝑛𝑡

1

2 ) ,ℎ𝑖.𝑡 : 

was defined as a univariate GARCH type model. 

ℎ𝑖𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖𝑞𝜀𝑖.𝑡−𝑞
2𝑄𝑖

𝑞=1 + ∑ 𝛽𝑖𝑝ℎ𝑖.𝑡−𝑝
𝑃𝑖
𝑝=1                                                                      (4) 

𝜔𝑖 . 𝛼𝑖𝑞  𝑎𝑛𝑑 𝛽𝑖𝑝 were non negative parameters for i=1,…,n  

𝑅𝑡::   n× n conditional correlation matrix of 𝜀𝑡, at time t, it is decomposed into:  

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1                                                                                   (5) 

𝑄𝑡 ∶ was the n×n symmetric positive definite matrix which had the form: 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄̅ + 𝑎 𝑢𝑡−1 𝑢́𝑡−1 + 𝑏𝑄𝑡−1                                 (6) 

𝑄̅  : was the unconditional variance matrix of 𝑢𝑡 . 𝑄̅ = 𝐶𝑜𝑣[𝑢𝑡  𝑢́𝑡] = 𝐸[𝑢𝑡  𝑢́𝑡] ,the estimate of 𝑄̅ =
1

𝑇
∑ 𝑢𝑡  𝑢́𝑡

𝑇
𝑡=1  . 𝑎 and  

𝑏 were non-negative scalar parameters that satisfy 𝑎 + 𝑏 < 1 

𝑄𝑡
∗ = √𝑞𝑖𝑖.𝑡  was a diagonal matrix with the square root of the ith diagonal element of 𝑄𝑡  on its ith diagonal position. 

The number of parameters to be estimated is (N+1)×(N+4)/2, the DCC model can be estimated by two-steps , the 

conditional variance is estimated via univariate GARCH model for each variable in the first step, then the estimation 

results were used as input to estimate the correlation parameters in the second step. [18] . 

 

2.1.1 Estimation of DCC-GARCH Models 

In this subsection, parameters of a DCC-GARCH model were estimated by two different distributions for the error; 

the multivariate Gaussian and the multivariate Student’s t.[6,7,13]: 

 

2.1.1.1 Multivariate Gaussian distributed errors  

The joint distribution of 𝑧𝑡    𝑡 = 1 … . 𝑇 ,when the standardized errors, 𝑧𝑡, were multivariate Gaussian distributed 

was: 

𝑓(𝑧𝑡) = ∏
1

(2𝜋)𝑛/2
𝑇
𝑡=1 exp {−

1

2
𝑧𝑡′𝑧𝑡}                                                                (7) 

𝐸[𝑧𝑡] = 0. 𝐸[𝑧𝑡′𝑧𝑡] = 𝐼. 𝑡 = 1 … . 𝑇  the period used to estimate the model.  

the likelihood function for 𝜀𝑡  = 𝐻𝑡
1/2

𝑧𝑡                                                             

𝐿(𝜃) = ∏
1

(2𝜋)
𝑛
2 |𝐻𝑡|

1
2

𝑇
𝑡=1 exp {−

1

2
𝜀𝑡′𝐻𝑡

−1𝜀𝑡}                                           (8) 
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Where:𝜃 the parameters of the model and it was divided to :(𝜙. 𝜓) = (𝜙1 … . 𝜙𝑛. 𝜓) ,𝜙𝑖 = 𝛼0𝑖 . 𝛼1𝑖 … . 𝛼𝑞𝑖 . 𝛽1𝑖 . … . 𝛽𝑝𝑖) 

are the parameters of univariate GARCH model for i=1,…,n. 𝜓 = (𝑎. 𝑏) the parameters in equation(6) after taking the 

logarithm of (8) and substituting 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡  became: 

ln(𝐿(𝜃)) = −
1

2
∑ (𝑛𝑙𝑛(2𝜋) + 2 ln|𝐷𝑡|) + ln|𝑅𝑡| + 𝜀𝑡′𝐷𝑡

−1𝑅𝑡
−1𝐷𝑡

−1𝜀𝑡𝑡
𝑇
𝑡=1 )                                                            (9)  

The DCC model can be estimated by two-steps. First, the parameter 𝜙 of the univariate GARCH models were 

estimated for each series by replacing 𝑅𝑡 with the identity matrix 𝐼𝑛. 

ln(𝐿1( 𝜙)) = −
1

2
∑ (𝑛𝑙𝑛(2𝜋) + 2 ln|𝐷𝑡|) + ln|𝐼𝑛| + 𝜀𝑡′𝐷𝑡

−1𝐼𝑛𝐷𝑡
−1𝜀𝑡

𝑇
𝑡=1 )                                            (10) 

ln(𝐿1(𝜙)) =  ∑ (−
1

2
∑ (ln (ℎ𝑖𝑡) +

𝜀𝑖𝑡
2

 ℎ𝑖𝑡
)𝑇

𝑡=1 +𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)𝑛
𝑖=1                                                                                  (11) 

In the second stage, the parameter 𝜓 = (𝑎. 𝑏) were estimated using the correctly specified log-likelihood in 

equation (9) given as follow: 

ln(𝐿2(𝜓)) = −
1

2
∑ (𝑛𝑙𝑛(2𝜋) + 2 ln|𝐷𝑡|) + ln|𝑅𝑡| + 𝑢𝑡′𝑅𝑡

−1𝑢𝑡
𝑇
𝑡=1 )                                                          (12) 

 

2.1.1.2 Multivariate Student’s t-distributed errors  

The joint distribution of 𝑧𝑡    𝑡 = 1 … . 𝑇 ,when the standardized errors, 𝑧𝑡, were multivariate Student’s t distributed 

was: 

𝑓(𝑧𝑡|𝜈) = ∏
Γ(

𝜈+𝑛

2
)

Γ(
𝜈

2
)(𝜋(𝜈−2))

𝑛
2

𝑇
𝑡=1 [1 +

𝑧𝑡′𝑧𝑡

𝜈−2
]

−
𝑛+𝜈

2
                                                                                       (13)  

where 𝜈 represents the degrees of freedom, the likelihood function for 𝜀𝑡  = 𝐻𝑡
1/2

𝑧𝑡                      

𝐿(𝜃) = ∏
Γ(

𝜈+𝑛

2
)

Γ(
𝜈

2
)(𝜋(𝜈−2))𝑛/2|𝐻𝑡|1/2

𝑇
𝑡=1 [1 +

𝜀𝑡′𝐻𝑡
−1𝜀𝑡

𝜈−2
]

−
𝑛+𝜈

2
                                                                              (14) 

So, taking the logarithm and substituting 𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡  we obtained the following equation: 

ln(𝐿(𝜃)) = ∑  𝑇
𝑡=1 (ln [Γ (

𝜈+𝑛

2
)] − ln [Γ (

𝜈

2
)] −

𝑛

2
ln[π(𝜈 − 2)]) −

1

2
ln[|𝐷𝑡𝑅𝑡𝐷𝑡|] −

𝜈+𝑛

2
ln [1 +

𝜀𝑡′𝐷𝑡
−1𝑅𝑡

−1𝐷𝑡
−1𝜀𝑡

𝜈−2
])  (15)  

The estimation of the parameter 𝜙  in the first step as the same in equation (11). In the second stage, the parameter  

𝜓 = (𝑎. 𝑏. 𝜈) were estimated using the correctly specified log-likelihood in equation (15) given 𝜙 as follow: 

ln(𝐿2(𝜓)) = ∑  𝑇
𝑡=1 (ln [Γ (

𝜈+𝑛

2
)] − ln [Γ (

𝜈

2
)] −

𝑛

2
ln[π(𝜈 − 2)]) −

1

2
ln[|𝑅𝑡|] − ln[|𝐷𝑡|] −

𝜈+𝑛

2
ln [1 +

𝑢𝑡′𝑅𝑡
−1𝑢𝑡

𝜈−2
]   (16) 

 

2.2 The Generalized Orthogonal-GARCH (GO- GARCH) model  

The GO-GARCH model was as a generalization of the O-GARCH model of Ding ,1994 and Alexander 2001[9]. The 

GO-GARCH model was considered as the suitable model to modeling the stock markets, because, it was supporting 

the random vectors with probability distributions that were asymmetric and heavy- tailed. The starting point of GO-

GARCH model was the assumption that the vector observed process 𝑥𝑡 was defined by an n-vector of a linear 

combination of n conditionally uncorrelated factors 𝑦𝑡 = (𝑦1𝑡 ,…, 𝑦𝑛𝑡 . 𝑖 = 1. … . 𝑛)′ [8,14] 

𝑥𝑡 = 𝑊𝑦𝑡                                                  (17) 

Where: 𝑊 was a linear map that links uncorrelated factors with the observed variables was assumed to be constant 

over time, and invertible. It was decomposed into an orthogonal matrix U and a symmetric positive definite matrix 

Σ1/2 

𝑊 = Σ1/2𝑈                                         (18) 

Where Σ1/2 was the symmetric positive definite square root of the unconditional covariance matrix Σ [9,16]. 

Σ= 𝑊𝑊′=Σ1/2𝑈𝑈′Σ1/2                                                                                                                                               (19)                                                                                                    

instead of (18) 

𝑊 = 𝑃Λ1/2𝑈                                                                     (20) 

where P and Λ  denoted the matrices with, respectively, the orthogonal eigenvectors and the eigenvalues of Σ= 𝑊𝑊′, 

U is the orthogonal matrix of eigenvectors of 𝑊𝑊′. P and Λ would estimated directly by means of unconditional 

information. [14,15] 

The factors 𝑦𝑡  could be specified as: 

𝑦𝑡  =   𝐻𝑡
1/2

𝜂𝑡                                                            (21) 
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Where:𝐻𝑡 = 𝑑𝑖𝑎𝑔(ℎ1𝑡 . ℎ2𝑡 … . ℎ𝑛𝑡) was an n×n diagonal matrix of conditional variances, the random vector process 

𝜂𝑡 as the characteristics 𝐸(𝜂𝑡) = 0. 𝐸(𝜂𝑡
2) = 1; 

 hence, the conditional covariance matrix of  𝑥𝑡 is: 

Σ𝑡 = 𝑊𝐻𝑡𝑊′                                                                                                                                    (22) 

the  ℎ𝑖𝑡   were assumed to follow a GARCH process, one possibility, as considered by van der Weide, was to assume 

separate univariate GARCH (1,1): 

ℎ𝑖𝑡  = 𝜔𝑖 + 𝛼𝑖𝑦𝑖.𝑡−1
2 + 𝛽𝑖ℎ𝑖.𝑡−1   𝑓𝑜𝑟 𝑘 = 1.2. … . 𝑛                                                                                         (23) 

Where: 𝜔𝑖 = 1 − 𝛼𝑖 − 𝛽𝑖 , 𝛼𝑖 . 𝛽𝑖 ≥   0               𝛼𝑖 + 𝛽𝑖 < 1 

2.2.1Estimators of GO-GARCH models 

In this paper, we present four approaches were presented to estimate the Generalized Orthogonal GARCH models as 

proposed by van der Weide 2002 [8,14]: 

 

2.2.1.1Maximum likelihood (ML)estimator  

In this method, we estimated the vector 𝜃 of rotation coefficients that will identify the invertible matrix (W), and the 

parameters 𝛼𝑖, 𝛽𝑖for n univariate GARCH (1,1) specifications. The log -likelihood function could be represented as: 

𝐿(𝜃. 𝛼. 𝛽) = −
1

2
∑ 𝑛𝑙𝑜𝑔(2𝜋) + log|𝑊𝜃𝑊𝜃′| + log|𝐻𝑡|𝑇

𝑡=1 + 𝑦𝑡 ′𝐻𝑡
−1𝑦𝑡                               (24) 

where 𝑊𝜃𝑊𝜃′ = 𝑃Λ𝑃′  was independent of  𝜃 .The estimation procedure could be summarized as follows:  in the first 

step, P and Λ  matrices were estimated directly by means of unconditional information, and the second step estimated 

rotation coefficients of U and the parameters of the component univariate GARCH models using the conditional 

information. 

 

2.2.1.2 Nonlinear least square (NLS)estimator 

The NLS method added a third step to the Maximum likelihood method. The second part of the link matrix U was 

separated from estimation of the univariate GARCH models. We could identify U from the autocorrelation structure 

of 𝑠𝑡𝑠𝑡 ′ where 𝑠𝑡= 𝑃′Λ−1/2𝑥𝑡 is the standardized and orthogonalized version of 𝑥𝑡, with a symmetric matrix, by non-

linear least-squares, suppose that we minimize [4]: 

𝑆(𝐴) =
1

𝑇
∑ 𝑡𝑟([𝑦𝑡𝑦𝑡

𝑇
𝑡=1 ′ − 𝐼𝑛 − 𝐴(𝑦𝑡−1𝑦𝑡−1′ − 𝐼𝑛)A]2)                                                                                      (25) 

Using 𝑦𝑡 = 𝑈𝑠𝑡 . 𝑈′𝑈 = 𝑈𝑈′ = 𝐼𝑛And tr AB=tr BA: 

𝑆(𝐴) =
1

𝑇
∑ 𝑡𝑟([𝑈𝑇

𝑡=1 𝑠𝑡𝑠𝑡′𝑈′ − 𝐼𝑛 − 𝐴𝑈(𝑠𝑡−1𝑠𝑡−1′ − 𝐼𝑛)𝑈′A]2)                                                                          (26) 

𝑆(𝐴) =
1

𝑇
∑ 𝑡𝑟([𝑁

𝑡=1 𝑠𝑡𝑠𝑡′ − 𝐼𝑛 − 𝐵(𝑠𝑡−1𝑠𝑡−1′ − 𝐼𝑛)𝐵]2)                                                                              (27) 

𝑆(𝐴) = 𝑆∗(𝐵)                                                    (28) 

The estimates 𝐴̂, 𝐵̂ minimize 𝑆(𝐴) 𝑎𝑛𝑑 𝑆∗(𝐵) respectively from the first order conditions then  𝐵̂ = 𝑈′𝐴̂𝑈 . This 

means that U is a matrix of eigenvectors of matrix B from which the linear mapping matrix W and its inverse matrix 

𝑊−1can be computed. 

 

2.2.1.3 Fast Independent Component Analysis (Fast-ICA) estimator 

Broda and Paolella [16] introduced a two-step procedure for estimation of GO-GARCH model. The method was called 

CHICAGO (Conditionally Heteroscedastic Independent Component Analysis of Generalized Orthogonal GARCH 

models).  This method used independent component analysis as the tool for the decomposition of a high-dimensional 

problem into a set of univariate models. The ICA algorithm maximized the conditional heteroscedasticity of the 

estimated components. 

The estimation procedure can be summarized as follows. [2,8] First, the Fast-ICA was applied to the whitened 

data 𝜂𝑡  =   Σ̂−1/2𝑥̂𝑡  where Σ̂−1/2 was obtained from the eigenvalue decomposition of the OLS residuals covariance 

matrix. Second, the conditional log-likelihood function was expressed as the sum of the individual conditional log-

likelihoods, derived from the conditional marginal densities of the factors, such, 

𝐺𝐻𝜆𝑖(𝑦𝑖𝑡|𝜃𝑖) = 𝐺𝐻 (𝑦𝑖𝑡; 𝜆𝑖 . 𝜇𝑖√ℎ𝑖𝑡 .
𝜔𝑖

√ℎ𝑖𝑡
.

𝛼𝑖

√ℎ𝑖𝑡
.

𝛽𝑖

√ℎ𝑖𝑡
), plus, a term for the matrix W, estimated in the first step by Fast-

ICA: 

L(xt̂|θ. W) = T log|W−1| + ∑ ∑ log(GHλi(𝑦𝑖𝑡|𝜃𝑖)
N
i=1

T
t=1 )                                                            (29) 

Where  𝜃 :is a vector of unknown parameters in the marginal densities 
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2.2.1.4   Method-of-moment (MM) estimator 

The procedure of MM estimators involves the autocorrelation properties of the zero-mean matrix-valued 

processes 𝑆𝑡 = 𝑠𝑡𝑠𝑡
′ − 𝐼𝑛 , 𝑌𝑡 = 𝑦𝑡𝑦𝑡

′ − 𝐼𝑛 . For the process 𝑠𝑡 = 𝑈𝑦𝑡  the autocovariance and autocorrelation matrices 

satisfy [8,9]:  

Γ𝑖(𝑠) = 𝐸(𝑈𝑌𝑡𝑈′𝑈𝑌𝑡−𝑖𝑆′) = 𝐸(𝑆𝑡𝑆𝑡−𝑖) = 𝑈Γ𝑖(𝑦)𝑈′                                                            (30) 

And hence : 

ϕ𝑖(𝑠) = [Γ0(𝑠)]−1/2Γ𝑖(𝑠)[Γ0(𝑠)]−1/2  = 𝑈ϕ𝑖(𝑦)𝑈′                                 (31) 

The Û𝑖 as a matrix of eigenvectors from the symmetric version:ϕ̃𝑖(𝑠) =  
1

2
(ϕ̂𝑖(𝑠) + ϕ̂𝑖(𝑠)′) Where: 

ϕ̂𝑖(𝑠) = [Γ̂0(𝑠)]
−

1

2Γ̂𝑖(𝑠)[Γ̂0(𝑠)]
−

1

2                                                                                                              (32) 

With Γ̂𝑖(𝑠) =
𝟏

𝑻
∑ 𝑆𝑡𝑆𝑡−𝑖

𝑻
𝒕=𝒊+𝟏 = 

1

𝑇
∑ (𝑠𝑡𝑠𝑡′𝑇

𝑡=𝑖+1 − 𝐼𝑛)(𝑠𝑡−𝑖𝑠𝑡−𝑖
′ − 𝐼𝑛   ) and the standardized matrix [Γ̂0(𝑠)]

−1/2
 was 

derived from the singular value decomposition of the covariance matrix at lag zero. 

In this paper, four estimators were compared of matrix U: ML, NLS, Fast-ICA and MM estimators. 

 

3. Empirical Application 

This section provides an empirical comparison of the performance between DCC models and GO-GARCH for 

modeling the volatility dynamics among major indices in three groups. The first group contained three indices in 

American market; the second group contained three indices in European markets, and the third group contained three 

indices in Asian markets. The data and the estimated models were presented in the following subsection. 

 

3.1 Data Description 

The data for this study included the daily closing prices for major indices such as :The Dow (Dow Jones Industrial 

Average-United States); The MERVAL (MERV- Argentina );The GSPTSE (The S&P/TSX Composite- Canada); The 

FTSE100 (Financial Times Stock Exchange100- United Kingdom); The CAC 40  - France; The DAX30 -Germany ; 

The Nikkei 225- Japan; The SSEC – china; BSE Sensex30 (BSESN-India). 

The data was collected from investing.com and it covered the periods from 04/01/2012 to 29/12/2017 (totally 1396 

observations). The daily log returns 𝑟𝑡 was calculated as follows: 

𝑟𝑖𝑡 = ln (
𝑝𝑖𝑡

𝑝𝑖.𝑡−1
)                                                                                                            (33) 

Where 𝑝𝑖.𝑡 is the value of index i at time t, for i = 1,2,..,5 . The analyses and estimations have been performed with R 

software package. Figure (1) and (2) have presented the daily closing price and corresponding returns series 

respectively to the three groups. It seems from the figure (1) that all series moves more over time and figure (2) 

confirms that all the series have volatility clustering, which indicates that MGARCH model can be suitable for 

analyzing the data. 
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Figure (1) Daily closing prices 

 

 
Figure (2) Returns series for total of 1396 daily observations. 
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The statistical summary statistic for the daily stock market returns are presented at the table (1): 

Table (1) sum-mary statistics for daily stock market returns 

Returns 

Statistics 
Dow MERV GSPISE FTSE100 CAC40 DAX Nikkei SSEC BSESN 

Mean 0.00049 0.001724 0.000202 0.00022 0.00036 0.00054 0.00070 0.0003023 0.0005468 

Median 0.00055 0.001554 0.000687 0.00047 0.00056 0.00091 0.00071 0.0006807 0.0005386 

Min -0.0364 -0.12786 -0.04391 -0.04779 -0.0838 -0.0707 -0.0825 -0.088729 -0.061197 

Max 0.03875 0.125474 0.028965 0.03735 0.04641 0.04852 0.07427 0.056706 0.0519037 

St.dev 0.00762 0.020687 0.007371 0.00903 0.01203 0.01179 0.01383 0.0145061 0.0092410 

Skewness -0.293 -0.32543 -0.52565 -0.175 -0.401 -0.371 -0.3034 -0.107273 -0.220455 

Kurtosis 5.5482 7.465532 5.509809 5.2944 6.2968 5.3000 6.9885 10.80004 5.890221 

J. Bera 

P-value 

397.34 

(0.0000) 

1183.7 

(0.0000) 

430.38 

(0.0000) 

313.09 

(0.0000) 

669.06 

(0.0000) 

339.46 

(0.0000) 

946.08 

(0.0000) 

3803.9 

(0.0000) 

496.84 

(0.0000) 

Q2(10) 

P-value 

432.00 

(0.0000) 

116.56 

(0.0000) 

347.24 

(0.0000) 

470.15 

(0.0000) 

163.23 

(0.0000) 

201.13 

(0.0000) 

170.77 

(0.0000) 

486.95 

(0.0000) 

46.053 

(0.0000) 

ARCH 

Lag(10) 

187.5 

(0.000) 

93.747 

(0.000) 

159.25 

(0.000) 

194.39 

(0.000) 

86.003 

(0.000) 

108.73 

(0.000) 

90.724 

(0.000) 

197.1 

(0.000) 

39.071 

(0.000) 

ADF 
-11.229 

(0.01) 

-10.897 

(0.01) 

-12.401 

(0.01) 

-12.266 

(0.01) 

-12.155 

(0.01) 

-11.987 

(0.01) 

-11.665 

(0.01) 

-10.596 

(0.01) 

-11.597 

(0.01) 

From table (1). It’s noted that the returns series had a positive mean. Based on the magnitude of the unconditional 

standard deviations, the MERV was more volatile in American returns, while CAC40 in European returns and SSEC 

in Asian returns, we found that the American returns were perhaps slightly less volatile than others. The MERV 

appeared as an exception. Returns had negative skewness which supported that the series had asymmetric distributions 

(long left tail in the empirical distributions) and very high kurtosis which indicated that the empirical distribution had 

more weight in the tails. Thus it was leptokurtic, while GSPISE had the largest skewness in American returns, CAC40 

and Nikkei 225 in European and Asian returns respectively, the MERV had the largest kurtosis in magnitude in 

American returns. CAC40 and SSEC in European and Asia return respectively. In addition, the Jarque-Bera (JB)1 test 

clearly lead to a rejection of the assumption of normality for all returns at the 5% significance level which combined 

the skewness and kurtosis results. There was also a strong evidence of autocorrelation in returns, as it was indicated 

by Ljung-Box2 Q-Statistics on the squared residuals ith 10 lags at the 5% significance level. Moreover, the result of 

ARCH3 test indicated strong evidence of ARCH effect. It is imperative when modeling such a series that it must be 

stationary, the Augmented Dicker-Fuller (ADF) test was applied to the series, the test results showed that the null 

hypothesis of the unit root could be rejected at 5% level of significance and it could be concluded that the all returns 

were stationary. The unconditional correlation matrix among returns were given in table (2). We observed the 

following conclusions: Firstly, the correlation between returns was high in European returns, with average correlations 

ranging from 0.76 to 0.91, compared to 0.37 to 0.70 for the American returns; Secondly, the correlations among the 

three returns in Asian were lower than those in American and European. 

                                                           
1 Invented by Jarque and Bera (1980) and used to test the normality: 

𝐽𝐵 =
𝑛

6
(𝑆2 +

(𝐾 − 3)2

4
) 

Where: 𝑆  is the skewness, 𝐾 is the kurtosis and 𝑛 the sample size. 
2 The Ljung Box test checks if the autocorrelations are different from zero or not. 

𝑄𝑚 = 𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

 ~𝑥𝑚−𝑝
2  

Where 𝑛  the length of the series m: number of lags and  𝜌̂𝑘  the estimated autocorrelation for lag k. 
3 The test can be used to determine if there is volatility clustering in the data, and then to determine if there is any 

ARCH effects left in the residuals. The test statistic is : 

𝜀𝑡
2 = 𝑐 + ∑ 𝑎𝑖𝜀𝑡−1

2 + 𝜖𝑡

𝑛

𝑖=1
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Table (2) unconditional correlation matrix among returns for Americas, European and Asia returns 

 Dow MERV GSPISE  FTSE CAC DAX  Nikkei SSEC BSESN 

Dow 1 0.37496 0.69957 FTSE 1 0.81583 0.76001 Nikkei 1 0.20378 0.32639 

MERV  1 0.40707 CAC  1 0.90928 SSEC  1 0.17539 

GSPISE   1 DAX   1 BSESN   1 

 

3.2 Model Estimation: 

This section was divided into two subsections, the first subsection estimated DCC-GARCH model (with Gaussian and 

Student’s t distributed errors). The second subsection, is a comparson among four different estimators in GO-GARCH 

models.  

 

3.2.1 DCC-GARCH models 

In the first stage of DCC estimation, the parameter ϕ of the univariate GARCH models were estimated for each series. 

Empirical research had shown that most return series were well modelled by the GARCH (1,1), to investigate this, we 

computed the Akaike Information Criterion(AIC)4 and Schwartz-Bayesian Information Criterion (BIC)5 [1] 

 to the GARCH models with p,q ≤ 2 ,we found that the GARCH (1,1) had the smallest AIC and BIC among all models. 

So, we consided it as the suitable model. In the second stage, the parameter ψ were estimated using the specified 

Maximum-likelihood. 

Parameter estimation of DCC-GARCH model for the three groups under two distributional assumptions: Gaussian 

and Student’s t, were provided in table 3,4 and 5. 

 

Table (3): Parameter estimation of DCC-GARCH model for Americas group. 

Gaussian distributed errors       Student’s t distributed errors    

Variable Estimate S.Error t-value Signif Estimate S. Error t-value Signif 

 

Dow 

Mu 0.000743 0.000173 4.587415 0.000018 0.000803 0.000150 5.34143 0.000000 

Omega 0.000005 0.000001 5.631471 0.000000 0.000003 0.000003 1.16234 0.245096 

Alphal 0.185317 0.022554 8.216583 0.000000 0.195131 0.034058 5.73458 0.000000 

betal 0.732162 0.032016 22.86837 0.000000 0.770529 0.046826 16.45521 0.000000 

Shape     5.056588 0.672924 7.51436 0.000000 

 

MERV 

Mu 0.002362 0.000539 4.383890 0.000012 0.002056 0.000451 4.56271 0.000005 

Omega 0.000062 0.000035 1.767365 0.077167 0.000056 0.000024 2.33185 0.019708 

Alphal 0.155744 0.046646 3.338834 0.000841 0.189167 0.054544 3.46818 0.000524 

betal 0.703791 0.110938 6.343978 0.000000 0.693246 0.095326 7.27234 0.000000 

Shape     4.766202 0.620956 7.67559 0.000000 

GSPISE 

Mu 0.000344 0.000165 2.091059 0.036523 0.000566 0.000151 3.75519 0.000173 

Omega 0.000001 0.000015 0.057554 0.954104 0.000001 0.000001 0.70083 0.483408 

Alphal 0.080824 0.299502 0.269863 0.787266 0.087375 0.018310 4.77189 0.000002 

betal 0.904108 0.307726 2.938033 0.003303 0.900808 0.019516 46.15691 0.000000 

Shape     6.925499 1.322994 5.23472 0.000000 

DCC Alphal(a) 

DCC beta (b) 

Mshape 

0.030799 0.012301 2.503740 0.012289 0.011068 0.006671 1.65915 0.097087 

0.862526 0.090133 9.569474 0.000000 0.977605 0.019211 50.88665 0.000000 

    6.496963 0.499646 13.00314 0.000000 

Inf. Criteria 

Akaike 

Bayes 

Shibata 

Hannan-Quinn 

Log-Likelihood 

 

-20.042 

-19.979 

-20.043 

-20.019 

13996.63 

 

-20.236 

                        -20.157       

-20.236 

-20.206 

14135.39 

We can see from Table (3) that the estimated coefficients of the conditional mean (μ) are positive and significant at 

𝛼=5% level of significance for all returns. The Short-term persistence was evident in each variable as the estimated 

                                                           
4 AIC=-2ln(L)+2k 
5 BIC=-2ln(L)+kln(n) 

𝐿 is the maximized value of the likelihood function for the estimated model, k: the number of Parameters to be 

estimated, n: sample size. 
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coefficient on the α term is statistically significant at 𝛼=5% except GSPISE (Gaussian) and in each case, the short-

term persistence was less than the long-term persistence (β). The estimated coefficient (β) was statistically significant 

at 𝛼=5% for each variable which indicated the importance of long-term persistence. The estimated parameters 

indicated that the variables showed volatility clustering since α+ β is close to 1 for all variables. Also, the GARCH 

parameter (α) measured the reaction of conditional volatility to market shocks. If it is relatively large (e.g. above 0.1) 

then volatility is very sensitive to the market events. In our case only Dow and MERV (Gaussian)returns above 0.1, 

while parameter (β) measures the persistence in conditional volatility irrespective of anything happening in the market, 

if it is relatively large then volatility takes a long time to be ended [11].The results also showed the estimated 

parameters (Gaussian distributed error) ψ = (a. b) are a = 0.030799, b = 0.862526 and both of them are statistically 

significant at 𝛼=5% , which indicated that the conditional correlations were not constant, where (a) was the impact of 

past shocks on current conditional correlations, while (b) the impact of previous dynamic conditional correlations, the 

value of a 0.030799 related to the Conditional correlation parameters (with covariance targeting). The sum of a and b 

was less than one, which mean that dynamic conditional correlations came back. 

 The estimated DCC model is as follows: 

𝑄𝑡 = (1 − 0.030799 − 0.862526)𝑄̅ + 0.030799 𝑢𝑡−1 𝑢́𝑡−1 + 0.862526𝑄𝑡−1 

The table also showed the estimated parameters (Student’s t distributed error)  𝜓 = (𝑎. 𝑏. 𝜈) are a = 0.011068 

(significant at 10%), b = 0.977605, degrees-of-freedom (𝜈) = 6.496963 and the estimated coefficients of shape 

parameter provide values more than 5 for all returns except MERV and all are significant. From tables (2) we could 

conclude that the DCC-GARCH with student’s t-distribution is better than Gaussian distributed error according to 

Akaike information criterion (AIC), Schwartz Bayesian criterion (SBC), Shibata criterion and Hannan-Quinn criterion 

(HQ). 

The result concluded that the Student-t distribution is better to the financial data which suffered from fat-tailed 

distribution. 

 

Table 4: Parameter estimation of DCC-GARCH model for European group. 

Gaussian distributed errors       Student’s t distributed errors    

Variable Estimate S. Error t-value Signif Estimate S.Error t-value Signif 

 

FTSE 

Mu 0.000365 0.000209 1.74419 0.081126 0.000423 0.000194 2.175399 0.029600 

Omega 0.000004 0.000002 2.47300 0.013399 0.000004 0.000012 0.340379 0.733571 

Alphal 0.121276 0.016241 7.46711 0.000000 0.149123 0.031999 4.660295 0.000003 

Betal 0.825170 0.024949 33.07469 0.000000 0.808520 0.117772 6.865129 0.000000 

Shape     5.930074 2.008420 2.952606 0.003151 

 

CAC40 

Mu 0.000521 0.000264 1.97726 0.048012 0.000723 0.001195 0.604883 0.545257 

Omega 0.000001 0.000006 0.23908 0.811046 0.000003 0.000068 0.038556 0.969245 

Alphal 0.063253 0.058606 1.07929 0.280458 0.109009 0.794947 0.137127 0.890930 

Betal 0.929112 0.061096 15.20752 0.000000 0.880610 0.833663 1.056314 0.290825 

Shape     5.447248 9.676012 0.562964 0.573459 

DAX 

Mu 0.000762 0.000289 2.63438 0.008429 0.000842 0.000235 3.582029 0.000341 

Omega 0.000001 0.000004 0.33724 0.735933 0.000001 0.000001 0.931197 0.351752 

Alphal 0.055826 0.038594 1.44650 0.148037 0.081708 0.013918 5.870487 0.000000 

Betal 0.933696 0.043930 21.25432 0.000000 0.915101 0.014100 64.902317 0.000000 

Shape     5.219335 0.772198 6.759063 0.000000 

DCC Alphal(a) 

DCC beta (b) 

Mshape 

0.031204 0.014449 2.15951 0.030811 0.043266 0.018252 2.370518 0.017763 

0.936581 0.040407 23.17875 0.000000 0.909863 0.055213 16.479126 0.000000 

    5.780679 0.444772 12.996955 0.000000 

Inf. Criteria 

Akaike 

Bayes 

Shibata 

Hannan-Quinn 

Log-Likelihood 

 

-21.775 

-21.712 

-21.776 

-21.752 

15205.33 

 

-21.984 

-21.905 

-21.984 

-21.955 

15354.85 

 

 

We can see from Table 4 that the estimated coefficients of the conditional mean (𝜇)  are positive and significant 

at 𝛼=5% and 10% level of significance for all returns except CAC40. The Short-term persistence is evident in each 

variable as the estimated coefficient on the (α) term is statistically significant at 𝛼=5% except CAC40 and DAX30 

and in each case, the short-term persistence is less than the long-term persistence (β). The (β) is statistically significant 

at 𝛼=5% except for CAC40 which indicate the importance of long-term persistence. The estimated parameters 
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indicated that the variables showed volatility clustering since α+ β was close to 1 for all variables. Also, the value of 

the parameter (α) indicates that the volatility is very sensitive to the market events. (β) measures the persistence in 

conditional volatility irrespective of anything happening in the market.  The results also showed the estimated 

parameters ψ = (a. b) are a = 0. 031204, b = 0. 936581 and both of them were statistically significant, which indicated 

that the conditional correlations were not constant. The sum of a and b was less than one, so, the dynamic conditional 

correlations came back. The estimated DCC model is as follows: 

𝑄𝑡 = (1 − 0.031204 − 0.936581)𝑄̅ + 0.031204𝑢𝑡−1 𝑢́𝑡−1 + 0.936581𝑄𝑡−1 

The results also showed the estimated parameters 𝜓 = (𝑎. 𝑏. 𝜈) are a = 0.043266, b = 0.909863, degrees-of-

freedom (𝜈) = 5.780679 and the estimated coefficients of shape parameter provided values more than 5 for all 

returns. Also, we concluded that the DCC-GARCH with student’s t-distribution was better than gaussian distributed 

error according to (AIC), (SBC), Shibata and (HQ)criteria, the results indicated that the t distribution improves the 

results, this finding can be explained by the weak asymmetry in the distribution of the CAC40 returns. 

 

Table 5: Parameter estimation of DCC-GARCH model for Asia group. 

Gaussian distributed errors       Student’s t distributed errors    

Variable Estimate S. Error t-value Signif Estimate S. Error t-value Signif 

Nikkei 

225 

mu 0.000907 0.000337 2.690032 0.007145 0.001083 0.000292 3.712727 0.000205 

Omega 0.000004 0.000007 0.583053 0.8559857 0.000004 0.000005 0.740755 0.458842 

Alphal 0.122844 0.034634 3.546909 0.000390 0.116628 0.049934 2.335622 0.019511 

Betal 0.862646 0.054142 15.933065 0.000000 0.872151 0.055049 15.843073 0.000000 

Shape     5.882302 0.932788 6.306148 0.000000 

SSEC mu 0.000359 0.000408 0.880751 0.378453 0.000446 0.000209 2.135642 0.032709 

Omega 0.000001 0.000015 0.037253 0.970283 0.000001 0.000002 0.487268 0.626069 

Alphal 0.054891 0.182215 0.301246 0.763227 0.055052 0.014457 3.808010 0.000140 

betal 0.943115 0.168371 5.601413 0.000000 0.943948 0.012496 75.538051 0.000000 

Shape     3.594567 0.398294   9.024901 0.000000 

BSESN mu 0.000717 0.000224 3.204140 0.001355 0.000688 0.000209 3.295165 0.000984 

Omega 0.000001 0.000002 0.445746 0.655781 0.000001 0.000001 1.308837 0.190590 

Alphal 0.040058 0.016329 2.453121 0.014162 0.041698 0.005482 7.606607 0.000000 

Betal 0.951848 0.018350 51.872406 0.000000 0.947938 0.007539 125.73905 0.000000 

Shape     6.428953 1.097468 5.857986 0.000000 

DCC Alphal(a) 

DCC beta (b)   

M shape 

0.060361 0.031442 1.919756 0.054889 0.082474 0.026377 3.126782 0.001767 

0.000001 0.382427 0.000004 0.999997 0.000003 0.352911 0.000009 0.999993 

    5.898653 0.381676 15.454604 0.000000 

Inf. Criteria 

Akaike             

Bayes 

Shibata 

Hannan-Quinn 

Log-Likelihood        

 

-18.797 

-18.733 

-18.797 

-18.773 

13128.05 

 

-18.982 

-18.903 

-18.982 

-18.952 

13260.67 

 

We can see from Table (5) that the estimated coefficients of the conditional mean (𝜇) are positive and significant 

at the 𝛼=5% level of significance for all returns except SSEC returns.  

The Short-term persistence is evident in each variable as the estimated coefficient on the (α) term is statistically 

significant at 𝛼=5% except SSEC under Gaussian distribution and in each case, the short-term persistence is less than 

the long-term persistence(β). The (β) is statistically significant at 𝛼=5% which indicates the importance of long-term 

persistence. The parameter estimates indicate that the variables appear volatility clustering since α+ β is close to 1 for 

all variables. If (α) is relatively large then volatility is very sensitive to the market events. In our case Nikkei 225 only 

above 0.1, if (β) is relatively large so the volatility takes a long time to end. The estimated parameters ψ = (a. b) are 

a = 0.0603612, b = 0.00001 and both of them are not statistically significant, the results also show the estimated 

parameters 𝜓 = (𝑎. 𝑏. 𝜈) are a = 0.082474, b = 0.00003 (not significant)and degrees-of-freedom (𝜈) =5.898653 and 

the estimated coefficients of shape parameter provide values more than 5 except SSEC returns .We concluded that the 

DCC-GARCH with student’s t-distribution was better than gaussian distributed error according to criteria but DCC 

beta (b) not significant.  
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The conditional correlation for the three groups according to DCC-GARCH as we see in figure (3) 

The following subsection introduced the results from GO-GARCH models. 

 

  3.2.2 GO-GARCH models 

This subsection aimed to compared four estimators for GO-GARCH models, for modeling the volatility dynamics 

among major indices in three groups. Factors or Components were estimated by estimators' Maximum likelihood 

(ML), Nonlinear least square (NLS), Fast Independent Component Analysis (Fast-ICA) and Method-of-moment 

(MM) with a formula for unobserved components as GARCH (1,1). The four estimator's parameters are shown in 

Table 6,7,8. The analysis of residuals performed after the estimation of the parameters was done using the multivariate 

portmanteau test introduced by Hosking (1980)6, Li & McLeod (1981)7 and ARCH tests. 

 

Table 6: Parameter estimation of GO-GARCH model for Americas group. 

We observed from Table (6) that the four estimators were not that different from each other. Judging by our 

diagnostics, using the Hosking (1980), Li & McLeod (1981) and the ARCH test, we conclude that the GO-GARCH 

with MM method fits the Americas returns better than other methods. 

                                                           
6 For more details see Hosking, J.R.M, (1980).  
7 For more details see W. K.Li and A. I. McLeod, (1981). 

 ML NLS ICA MM 

Variable Estimate S. Error Estimate S. Error Estimate S. Error Estimate S. Error 

Dow 

Omega 0.027573 * 0.011629 0.1389843* 0.049099 0.034565* 0.013614 0.0949297* 0.019830 

Alphal 0.075543* 0.014251 0.138635 * 0.031194 0.062145 * 0.013896 0.1810295* 0.027951 

Betal 0.908925* 0.017694 0.726779 * 0.071384 0.906351 * 0.021620 0.7266575* 0.038128 

MERV 

Omega 0.060444* 0.023661 0.0964502* 0.020078 0.013108* 0.006247 0.0992943* 0.036970 

Alphal 0.106186* 0.020491 0.1782547* 0.028201 0.034707* 0.008811 0.1277830* 0.026680 

Betal 0.829207* 0.039717 0.7282298* 0.038486 0.949868* 0.012590 0.7792547* 0.055034 

GSPISE 

Omega 0.0015460 0.001648 0.012347 * 0.005727 0.033978* 0.014635 0.0121025* 0.005516 

Alphal 0.024579* 0.005502 0.048644 * 0.009696 0.069695 * 0.014201 0.0507091* 0.009850 

Betal 0.973269* 0.006072 0.9389625* 0.012508 0.909841 * 0.018574 0.9372178* 0.012319 

Hosking 

Lags 10 102.08127 (0.1808149) 95.86898(0.31641843) 97.293112(0.2813079) 115.67410(0.0354877) 

Lags 20 220.50556(0.0213090) 207.17079(0.0806904) 205.65390(0.0921792) 237.33317(0.0026833) 

square10 124.68243(0.0091269) 126.22705(0.00000) 120.10082(0.0186874) 78.08437(0.81067423) 

square2 212.99211(0.0467395) 214.32663(0.00000) 226.82772(0.0102786) 176.85000(0.5524291 

Li& 

McLeod 

Lags 10 102.1069 (0.1803532) 95.92495(0.3149972) 97.32545(0.2805368) 115.6545(0.0355845) 

Lags 20 220.1738(0.0221026) 206.955540(0.0822492) 205.45112(0.0938069) 236.9311(0.00283319) 

S 10 124.5891 (0.009266) 126.1114(0.0072222) 119.9864(0.01901196) 78.12054(0.809871) 

Lags 20 212.8282(0.0474996) 214.1609(0.04160876) 226.4314(0.01077842) 176.71258(0.555326) 

ARCH 
Lags 10 36.068(0.00000) 22.412(0.01314) 26.1(0.003608) 6.8838(0.7364) 

Lags 20 49.902(0.000228) 33.1975(0.0321) 37.761(0.00947) 19.031(0.5198) 

P-values in parentheses                                                                                  * indicate significance at 5% level 

Americas              European     --   Asia      

   

Figure (3) The Conditional Correlation 
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The conditional correlations between each pair according to MM method were shown in figure (4) Which we 

found that the GO-GARCH correlations for Dow and MERV lie between 0.2 - 0.6 almost, whereas the correlations 

for Dow and GSPISE lie between 0.6 - 0.9 almost, and between 0.4 - 0.65 for MERV and GSPISE. 

 

 
Figure (4) The Conditional correlation between each pair according to MM method 

 

Table7: Parameter estimation of GO-GARCH model for European group. 
 ML NLS ICA MM    

Variable Estimate S. Error Estimate S. Error Estimate S. Error Estimate S. Error 

 

FSTE 

Omega 0.111272*    0.0251338 0.148613* 0.046534 0.040766* 0.018467 0.16907 * 0.059491 

Alphal 0.172436 *    0.0296006 0. 156131* 0.031328 0.052488* 0.012003 0.14311* 0.031542 

Betal 0.707372 *  0.0467048 0. 689184* 0.071147 0.937448* 0.014775 0.67969* 0.085756 

 

CAC 

Omega 0.014481*    0.0071277 0. 007250* 0.003703 0.284662* 0.143509 0.39925 * 0.073149 

Alphal 0.041809*  0.0122142 0. 058312* 0.011845 0.081680* 0.020079 0.17482* 0.035695 

Betal 0.942911 *   0.0179257 0. 936085* 0.012876 0.904203* 0.025321 0.42240* 0.089007 

DAX Omega 0.017749 *   0.0087909 0. 060249* 0.055285 0.330225* 0.102273 0.01113 * 0.005045 

Alphal 0.041647 *  0.0098385 0. 070521* 0.037225 0.122476* 0.023934 0.06254* 0.014326 

Betal 0.942937 *    0.0147930 0. 868885* 0.090734 0.828555* 0.034284 0.92682* 0.017129 

 

Hosking 

Lags 10 140.62505 (0.00000) 129.27067(0.0042313) 123.44304(0.01113645 143.84187(0.0000) 

Lags 20 231.19311(0.000000) 230.07616(0.0069033) 210.25607(0.0608330) 243.34357(0.00000) 

s 10 77.80125(0.8168985) 126.262847(0.006627) 136.57211(0.0011282) 164.4068(0.00000) 

s 20 160.43133(0.8498580) 221.74015(0.0185705) 207.20659(0.0804336) 259.8117(0.00000) 

 

Li& 

McLeod 

Lags 10 140.5356(0.0005249) 129.2369(0.0042561) 123.4331(0.01115404) 143.7391(0.000028) 

Lags 20 231.1138(0.00605901) 229.9380(0.00702332) 210.2927(0.060623) 243.1642(0.001190) 

s 10 77.90841( 0.814556) 126.5745(0.00668756) 136.5027(0.0011431) 164.2917(0.0000) 

s 20 160.59729(0.954417) 221.5954(0.0188747) 207.3498(0.07941237) 259.6360(0.00000) 

ARCH Lags 10 11.564(0.3153) 34.032(0.0001824) 427.21(0.0000) 43.613(0.00000) 

Lags 20 17.661(0.6097) 39.241(0.006221) 522.25(0.00000) 48.134(0.000407) 

P-values in parentheses                                                                                * indicate significance at 5% level 

 

Judging by our diagnostics, the GO-GARCH with ML method fits the European returns better than other 

methods. The conditional correlations between each pair according to ML method are shown in figure (5): 
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Figure (5) The Conditional correlation between each pair according to ML method 

 

From figure (5) we observe that the GO-GARCH correlations for FTSE and CAC40 lie between 0.78 - 0.9 

almost, whereas the correlations for FTSE and DAX lie between 0.72 - 0.86 almost, and between 0.9 - 0.95 for 

CAC40 and DAX. 

 

Table (8): Parameter estimation of GO-GARCH model for Asia group. 

 ML NLS ICF MM    

Variable Estimate S.Error Estimate    S.Error Estimate S.Error Estimate S.Error 

Nikkei 

225 

Omega 0.009593   0.005149 0.001866 0.001039 0.003431    0.002929 0. 025546*  0.009712 

Alphal 0.044883*    0.009791 0.046883* 0.007734 0.038858*   0.007779 0.136356*  0.023814 

Betal 0.946536*  0.012129 0.951792* 0.007143 0.959651*   0.007814 0.845801* 0.027551 

 

SSEC 

Omega 0.003149*   0.001257 0.021093* 0.007846 0.004459   0.002707 0.002625* 0.001096 

Alphal 0.053629*  0.008426 0.104779* 0.017964 0.057069*   0.012082 0.054680*   0.008904 

Betal 0.943646*   0.007832 0.878784* 0.020360 0.937817*   0.013469 0.943279*   0.008103 

BSESN Omega 0.016378*   0.007476 0.013025 0.006702 0.006686   0.004196 0.009738 0.005274 

Alphal 0.116792*  0.023757 0.056826* 0.012973 0.043961*   0.009624 0.041439* 0.009486 

Betal 0.872259*    0.026605 0.931183* 0.016657 0.950402*  0.011240 0.949419*  0.012115 

 

 

 

Hosking 

Lags 10 116.7799(0.03038) 116.51455 (0.031545) 122.05986(0.013844) 122.22205(0.01349) 

Lags 20 213.4013(0.04489) 203..2284(0.113137) 218.73734 (0.025842) 211.4143(0.054194) 

Lags 10 105.666(0.124024) 222.7338 (0.00000) 330.5656(0.00000) 103.26828(0.16028) 

Lags 20 207.9757(0.07507) 383.4348 (0.00000) 635.1853(0.00000) 196.89506(0.184353) 

 

Li& 

McLeod 

Lags 10 116.7748 (0.03040) 116.5096(0.031567) 122.0259(0.013917) 122.2101(0.013524) 

Lags 20 213.3019(0.04533) 203.2521(0.112917) 218.5986(0.026230) 211.4540(0.054285) 

Lags 10 105.7349(0.12308) 222.4154(0.00000) 329.8167(0.00000) 103.3356(0.159172) 

Lags20 207.8368 (0.0760) 382.2389(0.00000) 631.8454(0.00000) 196.8636(0.184769) 

ARCH Lags 10 6.5283(0.7691) 79.545(0.0000) 93.246 (0.00000) 6.1109(0.8059) 

Lags 20 17.886(0.5949) 110.43(0.0000) 124.21(0.00000) 16.071(0.7122) 

MSE8  0.9846143 1.055272 0.9400385 0.9773943 

MAE9  0.7343189 0.74839 0.7065218 0.7297305 

P-values in parentheses                                                                                               * indicate significance at 5% 

level 

 

We observe that ML estimator performs either as good as the MM estimator in estimate the Asian But, The MM 

estimator is considerably more efficient than the ML estimator according to performance measures MSE and MAE. 

The conditional correlations between each pair according to MM method are shown in figure (6): 

 

                                                           

8  Mean Square Errer, 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦̂𝑛 − 𝑦𝑛)2 

9  Mean Absolute Error 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦̂𝑛 − 𝑦𝑛| 
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Figure (6) The Conditional correlation between each pair according to MM method 

 

From figure (6) we observe that the GO-GARCH correlations for Nikkei and SSEC lie between 0.1 - 0.7 

almost, the correlations for Nikkei and BSESN lie between 0.3 - 0.55 almost, and between 0.15 - 0.45 for SSEC and 

BSESN. 

We concluded that, for the GO-GARCH models with four estimators, each factor the estimated short-run 

persistence (α) was considerably less than the long-run persistence (β). In the table (9) we presented the Orthogonal 

Matrix U for our models 

 

4. Summary and Conclusions 

The paper aims to compare between DCC models and GO-GARCH for modeling the volatility dynamics among major 

indices in three groups; the first group contains three indices in the American market; the second group contains three 

indices in the European market and the third group contains three indices in Asian market. We estimated DCC-

GARCH models with different assumptions of the error distribution; Gaussian and Student-t. The factors or 

components in GO-GARCH model were estimated by four estimators: Maximum likelihood, Nonlinear least square, 

Fast Independent Component Analysis and Method of Moment. The results indicated that: 

 The time series of financial returns under study were characterized by asymmetry and volatility clusters. 

 The DCC-GARCH with Student-t distribution was better to the financial data which suffer from fat-tailed 

distribution. 

 The GO-GARCH models were most effective for modeling the volatility dynamics among indices in the three 

groups compared to DCC model; especially when the time series of indices under study had asymmetry and 

volatility clusters. 

 In our case, we concluded that the GO-GARCH model estimated with Maximum likelihood is the best estimator 

in European group, and MM estimator performed better in estimate the American and Asian groups.  

 The results of the conditional correlations between indicators in each group have an economic significance which 

providing investors with new ways to diversify investment portfolios and reduce the risk. 

 

 

 

 

 

 

 

 

Table (9) Orthogonal Matrix 

Americas              European        Asia      

 [,1] [,2] [,3]  [,1] [,2] [,3]  [,1] [,2] [,3] 

[1,] 0.961101 -0.098775 -0.257930 [1,] 0.580817 -0.794972 0.175132 [1,] 0.993273 0.103172 0.052579 

[2,] 0.101737 0.994809 -0.001874 [2,] 0.581120 0.254265 -0.773077 [2,] -0.104535 0.994234 0.023876 

[3,] 0.256777 -0.024439 0.966161 [3,] 0.570044 0.550789 0.609656 [3,] -0.049812 -0.029211 0.998331 
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