
IJRRAS 30 (2) ● February 2017 www.arpapress.com/Volumes/Vol30Issue2/IJRRAS_30_2_01.pdf  

 

 

33 

 

GOODNESS OF FIT TEST FOR THE PROPORTION OF SUCCESSES IN 

BINOMIAL TRIALS AND CONFIDENCE INTERVAL VIA 

COINCIDENCE: A CASE OF RARE EVENTS 
 

Victor Nijimbere  

School of Mathematics and Statistics, Carleton University, Ottawa ON, K1S 5B6, Canada 

victornijimbere@gmail.com 

 

ABSTRACT 

In this paper, we define the coincidence in the context of binomial trials. We consider the null hypothesis  𝐻0: 𝑝1 =
𝑝2 =∙∙∙∙= 𝑝𝑛 = 𝜗 against the alternative hypothesis  𝐻1: 𝑝𝑖 ≠ 𝜗 for some 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛,  where 𝑝𝑖  is the probability 

of successes (or proportion) in each performed experiment, and 𝜗 is a real constant. We also consider that  𝜗 is small 

(𝜗 → 0) and the number of experiments is large (→ ∞), and make use of Poisson limit Theorem to establish a 

statistical test to examine these hypotheses. We show that if the null hypothesis is not rejected, then most likely the 

coincidence is expected to occur, and therefore we compute a confidence interval for 𝜗 in terms of the generalised 

hypergeometric function (special function) using the variance of the coincidence (or via coincidence).  These results 

are also written in terms of elementary functions using the asymptotic expansion of the hypergeometric function. The 

obtained results can, for example, be used in information retrieval, health care, natural language processing, quality 

control in industries, etc. 

 

Keywords: Coincidence, Poisson limit theorem, Hypothesis test, Confidence interval, Hypergeometric function, 

asymptotic evaluation 

 

1.   INTRODUCTION 

A discrete random variable 𝑋 having a binomial distribution with parameters 𝑘 and 𝑝 is denoted as 𝑋~𝑏𝑖𝑛(𝑘, 𝑝), and 

its probability mass function (p.m.f) is given by 

 

                                                          







  ,2,1,0,)1()( sppsXP sks

k

s

,                                                (1) 

 

where 𝑘 is the number of experiments performed, 𝑠 is the number of successes, 𝑝 (or proportion) is the probability of 

successes in any given performance, and  
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represents all possible combinations observed in the outcomes. It can be readily shown that the mean of 𝑋 is 𝑘𝑝 while 

the variance is 𝑘𝑝(1 − 𝑝). This can be found in any book on the basics of probability and statistics [2,9].  

 

The binomial distribution has many applications in science, social science, health care, and engineering [4,5,6,9,10]. 

Information retrieval, natural language processing (Dunning [4]) which are techniques frequently used to make 

interactions between humans and computers efficient, and quality controls are typical examples among other 

applications of the later distribution [5].  

 

To obtain meaningful results whenever the binomial distribution is applied, suitable inferential and statistical 

approaches must be carefully used. The main question is: ‘‘Is the estimate (estimated value) for the parameter 𝑝 

acceptable to justify the use of the binomial distribution model in (1) and at what extent?”. To adequately answer this 

question, one should first perform goodness of fit tests, and then construct confidence intervals.  

 

The mathematical and statistical analysis developed in this paper can be applied in science, social science, healthcare 

and engineering. In the present study, we will focus on text analysis which is importantly used in information retrieval 

and natural language processing [4,10], in order to simplify the description of our methods.  
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Among different statistical tests that may be conducted in text analysis is the Likelihood Ratio Test which is based on 

maximizing the likelihood function [2]. A good description of this test that consists of comparing two population 

proportions 𝑝1 and 𝑝2 in text analysis can be found in Dunning [4]. On the other hand, Wallis [10] constructed Wald 

confidence interval, Wilson’s score confidence interval and Clopper-Pearson interval for the parameter 𝑝 relevant to 

text analysis, and performed goodness of fit and contingency tests to evaluate these intervals. Dunning [4] suggested 

that the use of Poisson distribution may provide some benefits on one hand when 𝑝 is small, and Wallis [10], in the 

conclusion of his investigations on another hand, suggested that for skewed parameter 𝑝 and for large  
(𝑝 → 0, 𝑘 → ∞), Poisson distribution would achieve better results.  

 

Before we proceed to the aims of this work, we should first give a short description of Poisson distribution as it is an 

important tool that we are going to use. A discrete random variable 𝑋 is Poisson distributed with parameter 𝜆 if its 

probability mass function (p.m.f) is [2,9] 
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It is denoted as 𝑋~𝑃𝑜𝑖(𝜆), and it has a very interesting property that both the mean and variance of the random 

variable 𝑋 are equal and are given by 𝜆. 

  

In this paper, we consider a more general situation with 𝑛 independent studies in which experiments are performed 

with probabilities of successes 𝑝1, 𝑝2, 𝑝3,∙∙∙∙ 𝑝𝑛. And we are interested in establishing a test statistics for evaluating the 

null hypothesis 

 

                                                                          𝐻0: 𝑝1 = 𝑝2 =∙∙∙∙= 𝑝𝑛 = 𝜗,                                                                      (4)    

against the alternative hypothesis  

                                                                     𝐻1: 𝑝𝑖 ≠ 𝜗 for some 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛,                                                          (5) 

  

where 𝜗 is some real number. Thus, the first goal of this work is to establish a goodness of fit test to examine these 

hypotheses, and the second goal is to compute a confidence interval (CI) for the parameter 𝜗 if there is no evidence to 

reject the null hypothesis 𝐻0.  

 

We will consider that the parameter  𝜗 is small (𝜗 → 0) and constant, and 𝑘 → ∞ as suggested in Wallis [10]. In that 

case, Poisson distribution is a very good approximation for the binomial distribution [9].  This property is known as 

Poisson limit theorem or the law of rare events [9]. Using this property, we will show shortly (section 2) that the 

hypotheses in (4) and (5) are equivalent to the hypotheses  

 

                                                                          𝐻0: 𝜆1 = 𝜆2 =∙∙∙∙= 𝜆𝑛 = 𝜃                                                                      (6) 

and    

                                                                    𝐻1: 𝜆𝑖 ≠ 𝜃 for some 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛,                                                          (7) 

 

where 𝜆𝑖 , 𝑖 = 1,2,∙∙∙, 𝑛 are parameters of some Poisson distributions and 𝜃 is some real constant.  

 

Once this is done, we will then apply known results for Poisson distribution (see Nijimbere [7]) to obtain new results 

for the binomial distribution.  For instance, in the case of Poisson distribution, Nijimbere [7] established a 𝜒2 goodness 

of fit test to examine the hypotheses (6) and (7), and constructed a 100(1 − 𝛼)% confidence interval (CI) for 𝜃 using 

the variance of the coincidence that we will define later (section 3) in the context of binomial trials. In this paper, a 

new goodness of fit test to examine the hypotheses in (4) and (5) is carried out, and hence a new 100(1 − 𝛼)% CI for 

𝜗 is obtained using the variance of the coincidence as in Nijimbere [7].  

 

2.   APPROXIMATION OF THE BINOMIAL DISTRIBUTION BY POISSON DISTRIBUTION    

In this section, we describe the approximation of the binomial distribution by Poisson distribution. And we show that 

the hypotheses in (4) and (5) and those in (6) and (7) are equivalent. In fact, this is possible when the probability of 

success is small and the number of trials is large. 
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Theorem 1. (Poisson limit theorem) As 𝑝 → 0 and 𝑘 → ∞,  such that the mean value 𝑘𝑝 = 𝜆 is constant, the 

approximation  
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holds.  

 

The proof can be found in [9], we repeat it here. 

 

Proof.  
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 And if 𝑘 is large, 𝑘 → ∞, 
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which is Poisson distribution probability mass function since  
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Moreover, we observe that if 𝑝 → 0 and 𝑘 → ∞, then the variance of 𝑋 is approximated by 𝑘𝑝(1 − 𝑝) ≃ 𝑘𝑝 which is  

the mean of  𝑋, and that a distribution whose mean and variance are equal is Poisson distribution (see section 1 or [2]). 

Hence, under this assumption, the random variable 𝑋 is Poisson distributed with mean 𝜆 = 𝑘𝑝, 𝑋~𝑃𝑜𝑖(𝜆 = 𝑘𝑝). 

 

Let us now consider that 𝑋𝑖~𝑏𝑖𝑛(𝑘𝑖, 𝑝𝑖), 𝑖 = 1,∙∙∙, 𝑛. If 𝑘𝑖 = 𝑘, for all 𝑖 = 1,∙∙∙, 𝑛, then we have from (6) and (7) that 

 

                                                                          𝐻0: 𝑘𝑝1 = 𝑘𝑝2 =∙∙∙∙= 𝑘𝑝𝑛 = 𝜃                                                                      (12) 

and             

                                                                      𝐻1: 𝑘𝑝𝑖 ≠ 𝜃 for some 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛.                                                          (13) 

 

This gives 

 

 

                                                                          𝐻0: 𝑝1 = 𝑝2 =∙∙∙∙= 𝑝𝑛 =
𝜃

𝑘
= 𝜗                                                                      (14) 

and             

                                                                     𝐻̃1: 𝑝𝑖 ≠
𝜃

𝑘
= 𝜗 for some 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛,                                                          (15) 

 

which are exactly (4) and (5). 

 

 

3.   COINCIDENCE, PROBABILITY AND MOMENTS                                                                                                                                                      

In this section, the probability of the coincidence and the moments associated with the coincidence are derived in 

terms of the hypergeometric function following Nijimbere [7]. But before these derivations, we should first define the 

coincidence in the context of binomial trials and the generalized hypergeometric function. 
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Definition 1. Let 𝑋𝑖~𝑏𝑖𝑛(𝑘𝑖 , 𝑝𝑖), 𝑖 = 1,2,∙∙∙, 𝑛 be independent and identically distributed (iid). Then, a coincidence 

will occur if, after counting, the number of successes is the same in all 𝑛 cases. Thus, the coincidence is given by 
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Definition 2. The generalized hypergeometric function is a special function given by the power series [1,8]      
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where 𝑎1, 𝑎2,∙∙∙ 𝑎𝑝 and 𝑏1, 𝑏2,∙∙∙ 𝑏𝑞 are arbitrary constants, (𝛾)𝑠 =
Γ(𝛾+𝑠)

Γ(𝛾)
 for any complex 𝛾, with (𝛾)0 = 1, and 𝛤 is 

the gamma function. 

 

Theorem 2.  Let 𝑘𝑖=k for all 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛 (see Definition 1). Then under 𝐻0, and as 𝜗 → 0 and 𝑘 → ∞, the 

probability of the coincidence 𝐶 in (12) is approximated by  
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Proof. The joint p.m.f of 𝑋1 = 𝑠1, 𝑋2 = 𝑠2,∙∙∙, 𝑋𝑛 = 𝑠𝑛 is the multinomial p.m.f 
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If 𝑘𝑖 = 𝑘 for all 𝑖,  
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Using (4) and (14) and apply Theorem 1 yields 
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where 𝜃 = 𝑘𝜗. Now using Theorem 1 in Nijimbere [7] gives 
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Hence substituting back 𝜃 = 𝑘𝜗 gives 
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This ends the proof. 
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Theorem 3. Under 𝐻0, and as 𝜗 → 0 and 𝑘 → ∞, the 𝛾𝑡ℎmoment 𝜇𝛾 associated with the coincidence 𝐶 is 

approximately given by  
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where 𝛾 = 1,2,3,∙∙∙∙.   And the variance is approximated by  
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Proof. Under 𝐻0, and as 𝜗 → 0 and 𝑘 → ∞, we have              
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where, as before, 𝜃 = 𝑘𝜗. Following Lemma 1 in [7] yields 
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Hence, substituting back  𝜃 = 𝑘𝜗 gives 
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which is exactly (25). 

 

Now, we can apply Theorem 3 in [7] to obtain 
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This completes the proof. 

 

 

4.   GOODNESS OF FIT TEST AND CONFIDENCE INTERVAL (CI) FOR 𝝑 VIA COINCIDENCE  
In this section, a goodness of fit test to examine the hypotheses (4) and (5) is obtained. And if there is no evidence to 

reject the null hypothesis 𝐻0 in (4), then a 100(1 − 𝛼)% CI for 𝜗 is constructed using the Central Limit Theorem 

(CLT). 

 

Theorem 4.  If 𝑘𝑖=k for all 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛 (see Definition 1), 𝜗 → 0 and 𝑘 → ∞, and there is no evidence to reject the 

null hypothesis 𝐻0, then  
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where 𝑃(𝐶) is given by (14).  

 

Proof.  If 𝑘𝑖 = 𝑘 for all 𝑖, 𝑖 = 1,2,∙∙∙, 𝑛, we have  
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where 𝑃(𝐶) is given by (1.4) if  𝜗 → 0 and 𝑘 → ∞ (Theorem 1). This ends the proof. 

 

One may understand Theorem 4 this way. If the null hypothesis is not rejected, we shall expect more and more 

coincidences to take place as we perform more and more experiments. 

 

Moreover, if the null hypothesis 𝐻0 in (4) is not rejected, then most likely the coincidence is expected to happen 

(Theorem 4), and hence the variance of 𝑋1, 𝑋2,∙∙∙, 𝑋𝑛 is that of the coincidence 𝜎2 given in Theorem 3. And if 𝑘𝜗 ≥
10, then, by the Central Limit Theorem [3], we have 
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where 𝜎2 is given in Theorem 3. 

 

Let now 𝑝̂1, 𝑝̂2,∙∙∙, 𝑝̂𝑛 be the sample estimates for 𝑝1, 𝑝2,∙∙∙, 𝑝𝑛. And let 
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Having in mind that 𝑍~𝑁(0,1), we can now conduct a test as following. The null hypothesis 𝐻0 will be rejected if  
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and (or) 
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In the case, the null hypothesis is not rejected, a 100(1 − 𝛼)% CI for 𝜗 can be computed.  It is, in fact, given by  
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where 
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and 𝜗̂ is given by (31). 

In the case 𝑛 = 2, 𝜎̂ can be expressed in terms of modified Bessel functions of the first kind of order 0 and 1 [7]. 

Setting 𝜃 = 𝑘𝜗 in equation (A.67) in Corollary 1 in [7], we have 

 

                                           21

24

0

222 )2()()2()(   kIkekIke kk   ,                                                (43)   

 where 𝐼0 and 𝐼1 are the modified Bessel functions of the orders 0 and 1 respectively [1]. This gives  
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where 𝜗̂ = (𝑝̂1 + 𝑝̂2)/2.                                  

 

5.   FURTHER ASYMPTOTIC EXPENSIONS OF THE CI FOR 𝝑  

As mentioned in Definition 2, hypergeometric and Bessel functions are special functions. They have very interesting 

mathematical properties which can be used to simplify the results in section 3. For instance, if 𝑘𝜗̂ ≫ 1 (𝑘𝜗̂ ≥ 10), 

one can evaluate 𝜎̂ in terms of elementary functions rather than spectial functions [1,8]. This is called asymptotic 

evaluation. The asymptotic expressions for 𝜎2 were derived in Nijimbere [7].  

 

In the case 𝑛 > 2, the asymptotic expressions for 𝜎2 is given by equation (5.39) in Theorem 6 in [7]. Substitute 𝜃 =
𝑘𝜗 in (5.39) in [7], and then substitute the resulting expression for 𝜎2 in (35), we obtain simpler expressions for (39) 

and (40). Hence, we should reject the null hypothesis 𝐻0 if 
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and (or)     
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where as before 𝜗̂ is given by (36). 

 

If , by this test, we can not reject the null hypothesis, we can then construct a 100(1 − 𝛼)% CI for 𝜗 using (41), and 

where  
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In the case 𝑛 = 2, the asymptotic expressions for 𝜎2 is given by equation (A.73) in Theorem 8 in [7]. Substitute 𝜃 =
𝑘𝜗 in (A.73) in [7], and then substitute the resulting expression for 𝜎2 in (35), we obtain simpler expressions for (39) 

and (40). Hence, the null hypothesis 𝐻0 shoud be rejected if 
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and (or) 
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where as before where 𝜗̂ = (𝑝̂1 + 𝑝̂2)/2. 

If there is no evidence to reject it, one may construct a 100(1 − 𝛼)% CI for 𝜗 using (41), and where  
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6.   DISCUSSION AND CONCLUSION  
We defined the coincidence (Definition 1) and computed its probability of occurrence in terms of the hypergeometric 

function using Poisson limit theorem (Theorem 2). We have used Poisson limit theorem to express the variance and 

moments of the coincidence in terms of hypergeometric function (Theorem 3).  

We further showed that the probability that 𝐻0 is true equals that of the coincidence (Theorem 4). This can be 

understood this way. If the null hypothesis is true (cannot be rejected), then more coincidences will occur as we keep 

performing the experiment many times. Therefore, the variance of  𝑋𝑖 , 𝑖 = 1,2,∙∙∙, 𝑛 is given by the variance of the 

coincidence 𝐶. In this case, one may use the CLT to establish a statistical test as described in section 4. 

Hypergeometric and Bessel functions are special functions having interesting mathematical properties that need some 

understating of rigorous mathematics. For simplification purpose, asymptotic expansions of these non-elementary 

functions were used to express the variance of the coincidence 𝐶 in terms of elementary functions (section 5). 

The outcomes of this work can, for instance, be applied to achieve better results in health care, computational 

linguistics, quality controls, computer science and so on.   
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