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ABSTRACT 

In this study, natural convection flow of an incompressible fluid past an infinite vertical flat plate in a variable 

magnetic field has been investigated. The research is done to find the effects of Hall current on primary and 

secondary velocities of a fluid. In this case the flow is considered as steady and restricted to laminar domain. The 

equations governing the flow are solved numerically using finite difference method. The difference equations are 

then solved iteratively for various values of Hall current parameter ranging from 0.0 to 1.0. This study shows that an 

increase in the Hall current affects the velocity of the fluid. 

 

Keywords: Electron pressure gradient, Hall currents, Magnetohydrodynamics, Magnetic induction vector,  

Magnetic field intensity. 

 

1.    INTRODUCTION 

Hydro magnetic is the science of the motion or flow of electrically conducting fluid in the presence of a magnetic 

field.  The situation is one of mutual interaction between the fluid velocity field and the electromagnetic field. When 

an electrically conducting material (whether solid or denser fluid) moves in a magnetic field, it experiences a force 

that tends to move it perpendicularly to the electric field. In the case of a fluid, this happens due to the magnetic 

field acting on both electrons and ionized atoms. The motion of the electrically conducting fluid past a magnetic 

field induces current, a phenomenon known as Hall Effect. This induced current in turn produces induced magnetic 

field. Let B  be the magnetic field and E  be the electric field. If the magnetic field B  is perpendicular to E , there 

will be an electromagnetic force. The resulting current and magnetic field combine to produce a force that resists the 

fluid motion. The induced current also generates its own magnetic field, which distorts the original magnetic field. If 

the electromagnetic force generated is of the same order of magnitude as the hydro dynamical and inertia forces, the 

electromagnetic forces have to be taken into account in the flow field. 

The first research in magneto hydrodynamics (MHD) flows was done by Faraday [1] in 1839. He  performed an 

experiment with mercury flowing in a glass tube between the poles of a magnet and proposed the use of tidal 

currents in the terrestrial magnetic field for power generation.  

Prasada et al  [2]  solved the problem of MHD flow with wavy porous boundary, the influence of the heat source, 

parameters, suction velocity and waviness of the boundary on the flow field was numerically analyzed. 

Kumar et al  [3]  presented their study on compressible magneto hydrodynamic boundary layer in the stagnation 

region of a sphere. The effects of the induced magnetic field, mass transfer and viscous dissipation were taken into 

account. 

Rao et al [4] studied the heat transfer in a porous medium in the presence of transverse magnetic field. The effects of 

the heat source parameter and Nusselt number were analyzed. They discovered that the effect of increasing porous 

parameter is to increase the Nusselt number.  

Ram [5] used the finite difference method to analyze the MHD stokes problem for a vertical plate and ion-slip 

currents.  

Dash and Asha [6] presented magneto hydrodynamic unsteady free convection effect on the flow past an 

exponentially accelerated vertical plate. They observed that exponential acceleration of the plate has no significant 

contribution over the impulsive motion. 

Dash and Das [7]  considered heat transfer in viscous flow a long a plane wall with periodic suction and heat source. 

The effects of various parameters on the heat transfer in a three-dimensional laminar boundary layer past a flat plate 

in the presence of a heat source when a sinusoidal transverse suction velocity is applied to the walls were studied. 

Ram et al [8] analyzed the effects of Hall current and wall temperature oscillation on convective flow in a rotation 

fluid through porous medium bounded by an infinite vertical limiting surface. The effect of various parameters on 

the velocity and shear stress were determined. 

Hong-Sen and Huang [9] investigated some transformations for natural convection on a vertical flat plate embedded 

in porous media with prescribed wall temperature. They analyzed transformation for boundary layer equation for 

two dimensional steady natural convection a long a vertical flat plate, embedded in a porous media with prescribed 

wall temperature. 
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Kinyanjui et al [10] presented their work on MHD free convection heat and mass transfer of a heat generating fluid 

past an impulsively stated infinite vertical porous plate with Hall current and radiation absorption. An analysis of the 

effects of the parameters on skin friction, rates of mass and heat transfer was reported. 

Kwanza et al  [11] presented their work on MHD strokes free convection flow past an infinite vertical porous plate 

subjected to a constant heat flux with ion-slip and radiation absorption. The concentration, velocity and temperature 

distributions were discussed and result were presented in tables and graphs. 

Adel et al [12] investigated heat and mass transfer along a semi-infinite vertical flat plate under the combined 

buoyancy force effects of thermal and species diffusion in the presence of a strong non-uniform magnetic field. The 

similarity equations were solved numerically by using a forth-order Runge-Kutta scheme with the shooting method. 

 Emad et al [13] studied Hall current effect on magneto hydrodynamics free-convection flow past a semi-infinite 

vertical plate with mass transfer. They discussed the effects of magnetic parameter, Hall parameter and the relative 

buoyancy force effect between species and thermal diffusion on the velocity, temperature and concentration. 

Youn J. [14] investigated the unsteady two-dimensional laminar flow of a viscous incompressible electrically 

conducting fluid in the vicinity of semi-infinite vertical porous moving plate in the presence of a transverse magnetic 

field. The plate moves with constant velocity in the direction of fluid flow, and the free stream velocity follows the 

exponentially increasing small permutation law, the effect of increasing values of the suction velocity parameter 

results into a slight increase in surface skin friction for lower values of plate moving velocity. It was also observed 

that for several values of Prandtl number, the surface heat transfer decreases by increasing the magnitude of suction 

velocity. 

Emad et al [15] studied the effects of viscous dissipation and  Joule heating on MHD free convection flow past a 

semi-infinite vertical flat plate in the presence of the combined effect of Hall and ion-slip current for the case of the 

power-law variation of the wall temperature. They found the magnetic field acts as a retarding force on the 

tangential flow but have a propelling effect on the induced lateral flow.  The skin-friction factor for the lateral flow 

increases as the magnetic field increases. The skin- friction factor for the tangential and lateral flows are increased 

while the Nusselt number is decreased if the effect of viscous dissipation, Joule heating and heat generation are 

considered Hall and ion-slip terms were ignored in applying Ohm’s law as it has no marked effect for small and 

moderate values of the magnetic field. 

Hayat T et al [16] investigated the unsteady flow of an incompressible fluid in a circular duct embedded in a porous 

medium.  The fluid was made to conduct in the presence of magnetic field and the influence of Hall current was 

investigated.  Laplace transform technique was used to determine the exact solution for; constantly accelerating 

flow, sudden started flow, flow rate of trapezoidal variation with time and oscillatory flow. After examining the 

governing equation for an unsteady incompressible, electrically conducting fluid in circular duct, they discovered 

that the flow, Hall Effect and porosity depend on the material parameters. 

Angail [17], studied the magneto hydrodynamic model of boundary – layer equations for conducting viscous fluids 

to find the effect of free convection currents with two relaxation times on the flow of a viscous conducting fluid.  He 

adopted the solution of one-dimensional transient problem to a whole space with a plane distribution of heat sources.  

He observed that as the Alfven velocity the velocity of the fluid increased.  This was mainly due to the fact that the 

effect of magnetic field tends to decelerate in fluid particles.  He also noted that the velocity increased as the 

Grashof number (Gr) increased while it decreases when the Prandtl number (Pr) increases. 

Eldabe N.T. et al [18] discussed numerical solutions for problems which involved both the heat and mass transfer in 

hydro magnetic flow of a micro polar fluid past a stretching surface with Ohmic heating and viscous dissipation 

using Chebychev finite difference method. Various magnetic field parameters were used and they concluded that 

decrease in magnetic field parameters resulted to increase in temperature and concentration and decrease in velocity 

profiles. 

Jordon [19] analyzed the effects of thermal radiation and viscous dissipation on MHD free-convection flow over a 

semi-infinite vertical porous plate. The network simulation method was used to solve the boundary-layer equations 

based on the finite difference method. It was found that an increase in viscous dissipation leads to an increase of 

both velocity and temperature profiles, an increase in the magnetic parameter leads to an increase in the temperature 

profiles and a decrease in the velocity profiles. Finally an increase in the suction parameter leads to an increase in 

the local skin-friction and Nusselt number. 

 

2.    PROBLEM FORMULATION: APPROXIMATIONS AND ASSUMPTIONS 

In simplifying the equations governing the fluid flow in this study, the following assumptions will be made; 

1. Liquid metals and ionized gases have permeability e , so that we write ˆ ˆ
eB H . 

2. All velocities considered are much smaller compared to velocity of light 
2 2/q c <<1. 

3. The fluid flow is restricted to a laminar domain. 
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4. The fluid is incompressible (density is assumed to be constant). 

5. There is no external applied electric field. 

6. The plate is electrically non-conducting. 

7. The fluid is considered to be electrically conducting with no surplus electric charge distribution. 

8. Viscosity  is assumed to be constant. 

9. Thermal conductivity k  is assumed to be constant. 

10. There are no chemical reactions taking place in the fluid. 

11. Body forces action on the fluid caused by gravity and magnetic fields are assumed vital in the analysis. 

12. The force Ê  due to electric field is negligible compared to the force ˆ ˆJ B  due to the magnetic field. 

 

3. GENERAL GOVERNING EQUATIONS 

The equations governing the flow of an incompressible, electrically conducting fluid in the presence of a strong, 

non-uniform magnetic field are highlighted in this chapter. The equations are equation of continuity, equation of 

momentum, energy equation, concentration equation, Maxwell’s equation and Ohm’s law. 

3.1.    Equation of Continuity 

This equation is based on two propositions: 

That the mass of the fluid is conserved. That is mass can neither be created nor destroyed. 

That the flow is continuous that is empty spaces do not occur between particles which were in contact. 

In this case we consider an incompressible fluid (i.e. density is a constant), therefore the equation of continuity in 

tensor form 

 
 

0
u

t x

 
 

 
        (3.1) 

 0 0
u

x



 


 

 0
u

x


 


         (3.2) 

If this motion is three dimensions, equation 3.2 in x, y, z component becomes 

 0
u v w

x y z

  
  

  
        (3.3) 

Equation of continuity in vector form 

 
 

0
u

t x

 
 

 
. 

Since density is constant then 0
t





 

The equation reduces to 0q   where i j k
x y z

  
   

  
    (3.3)

 

hence in three dimension 

  0i j k ui vj wk
x y z

   
     

   
 

0
u v w

x y z

  
   
  

         (3.4) 

If the flow is along x – axis, and the plate is infinite it extends and lies along x and z axis thus the physical condition 

depends only on y, then the equation 3.4 reduces to 

0
v

y





           (3.4.a) 
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Since the velocity gradient is along y – axis.  On integrating 3.4a we get 

V = constant = V0          (3.4.b) 

3.2   Equation of momentum 

The equation of motion is based on the Newton second law of motion. 

The net rate of change of momentum must equal the net sum of forces acting on the fluid.  These equations are also 

known as Navier-Stokes Equation. 

In vector notation, the equation of motion considering the body force due to gravity and electromagnetic force only 

is written as 

  21
.

q
q q p q F

t





       


.       (3.5) 

where 
q

t




 is the temporal acceleration. 

 .q q  is the convective acceleration and allows for acceleration even when the flow is steady. 

1
p


   is pressure gradient. 

2q  is force due to viscosity. 

F is the body force 

Considering the body forces due to gravity and the electromagnetic force only, then these two forces replace the 

body force. 

Hence   21
. e g

q
q q p q F F

t





        


     (3.6) 

The electromagnetic force e eF E J B         (3.7) 

where J = current density 

 B = Magnetic field 

 E = electric field 

 e  = space charge 

Which is approximated to eF J B  .       (3.8) 

Hence the Navier Stoke equation becomes 

   21
.

q
q q p q g J B

t
 




         


 .    (3.9) 

The electrostatic force eE  in many flow problems is negligibly small in comparison with the electromagnetic 

force  J B .  The interaction between the magnetic field and the flow field is important in the dynamics of a 

conducting fluid.  When the electromagnetic force eF  is in the direction perpendicular to both the magnetic field H 

and the current density J there will be a significant influence on the flow field.  Thus the direction of the magnetic 

field H will have a significant influence on the flow field. 

 

3.2.  Equation of energy 

This equation is derived from the first law of thermodynamics 

The amount of heat added to a system dQ equals to the change in internal energy dE plus the work done dW 

dQ dE dW           (3.10) 

If heat produced by external forces is ignored then in tensor form is written as 

   j j j

j j j

U h U p qh p

t x t x x

 
 

   
    

    
     (3.11) 
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Where   is the viscous dissipation in three dimension and it is given by 

2 2 22 22 2
u v w u v v w w v

x y z dy y z y x z
 

                                
                               

                             

. 

When we apply thermodynamic definition of h. 

dQ dE dW   becomes 

p
h E


  .          (3.12) 

where E is the specific internal energy.  In differential form equation (3.12) becomes 

1dp
dh dE pd

 

 
    

 
.        (3.13) 

3.4.    Concentration equation 

This is based on the principle of mass conservation for each species in a fluid mixture.  In tensor form the diffusion 

equation is 

j j

j

C J

t x

 


 
.          (3.14) 

3.5.  Ohm’s law 

The law characterizes the ability of a material to transport electric charge under the influence of an applied electric 

field. For an electrically conducting material at rest the current density is  

ˆ ˆJ E           (3.15) 

In moving electrically conducting fluids the magnetic field induces a voltage in the conductor of the magnitude 

ˆq̂ B  

The generalized Ohm’s law is  

 ˆ ˆ ˆˆJ E q B .        (3.16) 

3.6.  Maxwell’s equation 

These equations provide links between the electric and magnetic fields independent of the properties of the matter. 

In this we consider the following set of equations 

ˆ ˆ

ˆ. 0

ˆ
ˆ .

H J

B

B
E

t          (3.17) 

4. SPECIFIC EQUATIONS GOVERNING FLUID FLOW 

In this section the specific equations governing incompressible free convection fluid flow in the presence of a 

variable magnetic field are derived.  The magnetohydrodynamic flow is considered past an infinite vertical porous 

plate. 

The x – axis is taken along the plate in vertical upward direction, which is the direction of the flow 
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4.1. Magnetic transport equation 

Combining Maxwell’s equation and Ohm’s law 

 ˆ ˆ ˆ ˆ ˆH J E V B             (4.1) 

where Ĥ  
= Magnetic field intensity 

   = Electrical conductivity 

 B̂  
= Magnetic induction vector 

 Ê  = Electric field 

   
1ˆ ˆ ˆE V B H


      

  

4.2. Momentum equation 

Since the fluid is in motion it possess momentum, hence we consider the equation of momentum. 

  2ˆ ˆ ˆˆ ˆ ˆ
q P

q q q g J B
t x

   
  

         
  

.     (4.2) 

The momentum equation is evaluated at the edge of the boundary layer where    and 0V  .  This is 

because at the boundary layer the velocity of the fluid is at its minimum. 

The pressure gradient in the y – direction results from the change of elevation 

Thus 
P

g
x







 

where   is the density near the plate. 

Combining the pressure term and the body force term, gives 

 g g g g          

 g     

The velocity profile at various Y – positions is 

 ˆ ˆ
v v

q q u v
x y

 
  

 
 

2
2

2
ˆ

v
q

x
 


 


 

Direction of fluid flow 

Variable 

magnetic field 

X-axis 

Z-axis 

Y-axis 
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Equation 4.2 becomes 

 
2

2
ˆ ˆv v v v

u v g J B
t x y x

    

    
       

    
.    (4.3) 

The volumetric coefficient of thermal expansion 

1

T






 
   

 
 

where T is temperature 

1

T T

 






 
   

 
 

1

T T

 






 
  

 
 

 T T        

The current density  J v B  , But eB H  

 eJ v H   . 

Hence the force term  e eJ B v H H       

2 2

e H v . 

Thus equation 4.3 reduces to 

 
2

2 2

2 e

v v v v
u v g T T H v

t x y x
   

    
      

    
 

Dividing both sides by   to get 

 
2 22

2

e H vv v v v
u v g T T

t x y x


 




   
     

   
.     (4.4) 

In the Z – axis direction, the force term J B  becomes 
2 2

e H w  

Where w is the velocity of the fluid in the Z direction 

Hence the equation of momentum in the Z – axis will be 
2 22

2

e H ww w w w
u v

t x y x






   
   

   
.      (4.5) 

 

4.3. Non – Dimensionalization 

The non – dimensionalization process is important because the results obtained for a surface experiencing one set of 

conditions can be applied to a geometrically similar surface under different conditions.  These conditions may be 

nature of the fluid, the fluid velocity or size of the surface. 

In MHD flow problems the some non-dimensional parameters are important and are defined as follows. 

 

4.3.1. Reynolds number, Re 

It is the ratio of inertia force to the viscous force if for any flow this number is less than one the inertia force is 

negligible and if it is large, one can ignore viscous force. 

Re
UL UL

. 
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4.3.2. Grashof number, Gr 

It is the ratio of buoyancy forces to viscous forces.  If it is large then there is strong convective current. 

 *

3

wg T T
Gr

U

  
 . 

 

4.3.3. Prandtl number, Pr 

It is the ratio of viscous force to thermal force.  The Prandtl number is large when thermal conductivity is less than 

one and viscosity is large and it is small when viscosity is less than one and thermal conductivity is large.       

Pr
pC

k


 . 

 

4.3.4. Magnetic parameter/Hartmann Number, M 

It is the ratio of magnetic force to the viscous force. 
2 2

2 0

2

e H
M

U

 


 . 

 

4.3.5. Eckert number, Ec. 

It is the ratio of the kinetic energy to thermal energy. 

 

2

* *

p w

U
Ec

C T T




. 

If we let all the variables with the superscript (*) star to represent dimensional variables then the non-

dimensionalization can be based on the following scaling variables. 
* 2t U

t


 , 

*x U
x


 , 

*y U
y


  

*u
u

U
  

*v
v

U
 , 

*w
w

U
 , 

*

0

H
H

H
  and 

* *

* *

w

T T

T T
 







. 

Equations 4.4 and 4.5 can be written using dimensional variables as 

         

 
2

2

2 * ** * * 2 *
* * * *

* * * *

e H vv v v v
u v g T T

t x y x


 




   
     

   
    (4.6) 

2

2

2 * ** * * 2 *
* *

* * * *

e H ww w w w
u v

t x y x






   
   

   
     (4.7) 

 

These are non-dimensionalized as follows 

 

 
2

2 *
0

0* * **

HHH x H U
H

x x x x xx 

      
      
       

 

2

0

2 *

H U H x

x x

 
  

 
 

22 2

0 0

2 2 2

H U H UU H H

x x  

 
   

 
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     
* *

0

0* *

v H vU HH vHy U
UH

y y y y 

   
   

   
 

 =

2

0U H H v
v H

y y

  
 

  
 

 

 

         

 * 2 3

* *

vuv t v U U v
U

t t t t t 

   
    

    
 

 * * 3
* 2

* *

vUv x v U uU v
u Uu uU

x x x x x 

   
    

    
 

 * 3
* 2

* *

vUv y v U vU v
v vU vU

y y y y y 

   
    

    
 

 
2

2 * 2 2

* * * 2 **

vUv x v U U v x
U

x x x x x x xx  

      
      
      

 

2 2 3 2

2 2 2

U U v U v

x x  

 
  

 
 

*

0H H H ,  * * * *

wT T T T      

Substituting the above, equation (4.7) becomes 

 
2 2 23 3 3 3 2

* * 0

2 2

e
w

H H UvU v uU v vU v U v
g T T

t x y x


  

    


   
     

   
 

Multiplying by 
3U


 

 
2 2 22

* * 0

2 3 2

e
w

H H vv v v v g
u v T T

t x y x U U

 


 


    
      

    
 

But 
 *

3

wg T T
Gr

U

  
  and 

2 2
2 0

2

e H
M

U




  

Thus 
2

2 2

2

v v v v
u v Gr M H v

t x y x


   
    

   
 .     (4.8) 

 * 2 3

* *

wUw t w U U w
U

t t t t t 

   
    

    
 

 * 3
* 2

* *

wUw x w U uU w
u uU uU

x x x x x 

   
     

    
 

 * 3
* 2

* *

wUw y w U vU w
v vU vU

y y y y y 

   
    

    
 

 2 * 3 2
2

*2 * * * * 2

wUw x w U w x U w
U U

x x x x x x x x x x
  

 

        
        

         
 

*

0H HH , 
*w wU  
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Substituting these, equation 4.7 becomes 
2 2 23 3 3 3 2

0

2

e H H UwU w uU w vU w U w

t x y x



    

   
   

   
 

Multiplying both sides by 
3U


 

2 2 22

0

2 3

e H H Uww w w w
u v

t x y x U

 



    
   

   
     

 

2 2 22

0

2 2

e H H ww w w w
u v

t x y x U

 



   
   

   
 

                   But 

2 2
20

2

e H
M

U

 


  

Thus 
2

2 2

2

w w w w
u v M H w

t x y x

   
   

   
 .      (4.9) 

5. Finite difference approximations 

To give a relationship between the partial derivative in the differential equation and the function values at the 

adjacent nodal points, we use a uniform mesh. In this case the x-y plane is divided into a network of uniform 

rectangular cells of width y and height x . 

 

     

     

     

     

     

       Y 

 

    Where i  refers to X  

 k  refers to Y  

 

If x  represent increment in X then X=i x . 

If y  represent increment in Y then Y=k y . 

Using Taylor’s series expansion of dependent variables about a grid point (i,k) we have 

 
/ // 2 /// 31 1

( , 1) ( , ) ( , ) ( , )( ) ( , )( ) ...
2 6

i k i k i k y i k y i k y  (5.1) 

 
/ // 2 /// 31 1

( , 1) ( , ) ( , ) ( , )( ) ( , )( ) ...
2 6

i k i k i k y i k y i k y  (5.2) 

(i + 1, k) 

(i, k–1) (i, k) (i, k+1) 

(i – 1, k) 

x  

y  

X 
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Subtracting equation 5.1 from equation 5.2 we have 

 

/

/

2 ( , ) ( , 1) ( , 1)

( , 1) ( , 1)
( , )

2

i k i k i k

i k i k
i k Hot

y

     (5.3) 

Adding equation 5.1  to equation 5.2 results to 

 
// 2( , )( ) 2 ( , ) ( , 1) ( , 1)i k y i k Hot i k i k  

 
//

2

( , 1) 2 ( , ) ( , 1)
( , )

( )

i k i k i k
i k Hot

y
    (5.4)  

The central difference formulae for the first and second derivative with respect to x are 

 
/ ( 1, ) ( 1, )

2

i k i k
Hot

x
      (5.5) 

 
//

2

( 1, ) 2 ( , ) ( 1, )

( )

i k i k i k
Hot

x
 .   (5.6) 

Let the mesh point variable at time nt  be denoted by
( , )

n

i k
. Then the forward difference for the first order derivative 

with respect to time t will be 

 

1

( , ) ( , )/

( , )

n n

i k i kn

i k Hot
t

.       (5.7) 

Using forward finite difference for the first order time derivative and central finite difference for the first and second 

order partial derivatives, then the governing equations 4.8 and 4.9 can be written in the finite difference form as 

follows 

 

 
2

2 2

2

v v v v
u v Gr M H v

t x y x
 becomes 

1

( , ) ( , ) ( 1, ) ( 1, ) ( , 1) ( , 1) ( 1, ) ( , ) ( 1, )

0 ( , ) 2

2 2

( , ) ( , ) ( , )

2

2 2 ( )

n n n n n n n n n

i k i k i k i k i k i k i k i k i kn

i k

n n n

i k i k i k

v v v v v v v v v
u v

t x y x

Gr M H v

 

Making 
1

( , )

n

i kv  the subject we get 

        

 

( 1, ) ( 1, ) ( , 1) ( , 1)

0 ( , )

1

( , ) ( , )

( 1, ) ( , ) ( 1, ) 2 2

( , ) ( , ) ( , )2

2 2

2

( )

n n n n

i k i k i k i kn

i k

n n

i k i k
n n n

i k i k i k n n n

i k i k i k

v v v v
u v

x y
v v t

v v v
Gr M H v

x

. (5.8)  

2
2 2

2

w w w w
u v M H w

t x y x
  becomes 

1

( , ) ( , ) ( 1, ) ( 1, ) ( , 1) ( , 1) ( 1, ) ( , ) ( 1, )

0 ( , ) 2

2 2

( , ) ( , )

2

2 2 ( )

n n n n n n n n n

i k i k i k i k i k i k i k i k i kn

i k

n n

i k i k

w w w w w w w w w
u v

t x y x

M H w

   

Making 
1

( , )

n

i kw  the subject we have 
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( 1, ) ( 1, ) ( , 1) ( , 1)

0 ( , )

1

( , ) ( , )

( 1, ) ( , ) ( 1, ) 2 2

( , ) ( , )2

2 2

2

( )

n n n n

i k i k i k i kn

i k

n n

i k i k n n n

i k i k i k n n

i k i k

w w w w
u v

x y
w w t

w w w
M H w

x

 .  (5.9) 

 

In this case we assume that the induced magnetic field is negligible so that the fluid is permeated by a strong 

variable magnetic field H of magnitude oH  

The generalized Ohm’s law including the effects of Hall current parameter is  

 * 1
o e o e

o e

m
J J H E q H P

H e
    (5.10)  

     where * e em  is Hall Current parameter. 

For short circuit problem, the applied electric field E=0 and for partially ionized gases the electron pressure gradient 

may be neglected.  

Hence equation (5.10) becomes 

 *
o e o

o

m
J J H q H

H
.      (5.11)  

In component form 

 *

0

0 0

0 0 0 0

y y z e

o

z o o

i j k i j k
m

J J J v w
H

J H H

 

This gives 

 *y z e oJ m J wH         (5.12)  

    and *z y e oJ m J vH        (5.13) 

Solving equations (5.12) and (5.13) simultaneously we get  

 
*

2

* 1

e o

y

H m v w
J

m
 and 

*

2

* 1

e o

z

H m w v
J

m
 

But eJ qH , 

 
*

2

* 1

e o

y e y

H m v w
J vH

m
 

Hence 
*

2

* 1

o

y

H m v w
H

m v
. 

*

2

* 1

e o

z e z

H m w v
J wH

m
 this yield 

 
*

2

* 1

o

z

H m w v
H

m w
. 

Substituting yH  and zH  in equations 5.8 and 5.9 we get the final equations as 
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( 1, ) ( 1, ) ( , 1) ( , 1)

0 ( , )

1
2( , ) ( , )

* ( , ) ( , )( 1, ) ( , ) ( 1, ) 2

( , ) ( , )2 2

* ( , )

2 2

2

( ) 1

n n n n

i k i k i k i kn

i k

n n

i k i k
n nn n n

o i k i ki k i k i k n n

i k i kn

i k

v v v v
u v

x y

v v
H m v wv v v

Gr M v
x m v

t . (5.14) 

( 1, ) ( 1, ) ( , 1) ( , 1)

0 ( , )

1
2( , ) ( , )

* ( , ) ( , )( 1, ) ( , ) ( 1, ) 2

( , )2 2

* ( , )

2 2

2

( ) 1

n n n n

i k i k i k i kn

i k

n n

i k i k n nn n n
o i k i ki k i k i k n

i kn

i k

w w w w
u v

x y

w w
H m w vw w w

M w
x m w

t  . (5.15) 

 

             

Since X-axis is along the infinite vertical porous plate then x varies from 0 to infinity. If we set i=21 to correspond 

to x  and 0.1x y  then we have  

21 0.1 2.1x i x  

The initial condition (where t=0) 

At x=0  
0

(0, ) 1kv ,    
0

(0, ) 0kw ,       0 5u  

At x>0  
0

( , ) 0i kv ,    
0

( , ) 0i kw ,       
0 5u  

For i>0 and all k, the boundary conditions (where t>0) takes the form 

At x=0  (0, ) 1kv ,     (0, ) 1kw ,       0 5u  

At x (21)   (21, ) 0kv ,    (21, ) 0kw ,      0 5u , For all n. 

The computations are done when t  is small. Set t =0.00125. 

The Prandtl number is taken as 0.71 which correspond to air. 

 Magnetic parameter 
2M =10 which signifies a strong variable magnetic field. 

 Grashof number, Gr > 0(0.4) corresponding to convective cooling of the plate. 

Reynolds number, Re <1 (0.6) so that the inertia force is negligible. 

The Hall current parameter *m  is varying from 0, 0.25, 0.5, 0.75, 1.0. 

6. RESULTS AND DISCUSSION 

We  analyzed the results accruing from the iterations to get the effects of Hall current on the primary velocity and 

secondary velocity. The results are presented in tables and graphs. 
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TABLE 5.1: TABLE FOR PRIMARY VELOCITY 

X V1 V2 V3 V4 V5 

0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

2 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

4 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

5 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

7 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

8 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

9 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

10 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001 

11 0.00000007 0.00000007 0.00000007 0.00000007 0.00000007 

12 0.05609995 0.03896634 0.01467953 0.00384491 0.00087389 

13 0.04401007 0.03058397 0.01153308 0.00302267 0.00068744 

14 0.05445099 0.03782142 0.01423591 0.00372992 0.00084951 

15 0.05833446 0.04053308 0.01525194 0.00400049 0.00091394 

16 0.06643570 0.04566854 0.01703638 0.00446799 0.00102655 

17 0.07484943 0.05089758 0.01893019 0.00493957 0.00114450 

18 0.09454902 0.05998714 0.02119153 0.00549167 0.00128723 

19 0.12031026 0.07184199 0.02378313 0.00610872 0.00145823 

20 0.22872354 0.10908002 0.02764635 0.00682719 0.00166190 

21 0.41883271 0.17207046 0.03305566 0.00766075 0.00190543 
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Figure 5.1: Graph of primary velocity 

Increase in Hall current parameter results decrease in the primary velocity and the velocity increases as move away 

from the plate. This is because increase in Hall current results to increase in cyclotron frequency which reduces the 

velocity of the fluid.  
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TABLE 5.2:TABLE FOR SECONDARY VELOCITY 

X W1 W2 W3 W4 W5 

0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

2 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

3 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

4 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

5 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

7 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

8 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

9 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

10 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

11 -0.00070307 -0.00062279 -0.00044996 -0.00028798 -0.00017577 

12 -0.00073237 -0.00064845 -0.00046811 -0.00029942 -0.00018273 

13 0.03369989 0.01610532 0.00196172 -0.00012285 -0.00017359 

14 0.03326077 0.01574366 0.00167272 0.00013172 -0.00016804 

15 0.01432770 0.00660706 -0.00009189 -0.00028583 -0.00016341 

16 -0.00584263 -0.00365039 0.01175670 -0.00016877 -0.00009129 

17 -0.00884405 -0.00361002 0.01114382 0.00020451 -0.00000452 

18 -0.00350270 0.00200358 0.01112390 -0.00013111 0.00064059 

19 0.02029088 -0.00878591 0.01107907 0.00067989 0.00069953 

20 0.01701811 -0.00333301 0.01043704 0.00052956 0.00075490 

21 -0.01141618 0.02063509 0.00960671 0.00012998 0.00080618 
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Figure 5.2: Graph of secondary velocity 

For small values of the Hall current, the secondary velocity fluctuates as we move away from the plate. But as the 

Hall current is increased the secondary velocity tend to be constant (zero). The fluid particles next to the plate have 

a velocity of zero, however since the flow is laminar, velocity increases and decreases away from the plate due to 

the presence of the variable magnetic field.    

6.1.  CONCLUSION 

An analysis of the effects of Hall current on the primary and secondary velocities of fluid flowing across a variable 

magnetic field has been carried out. The specific governing equations have been solved by numerically and the 

results have been analysed. In this study, it has noted that  increase in the Hall current affects the velocity of the 

fluid. However due to lack of equipments, no experimental results have been obtained hence there is no comparison 

between these numerical values and experimental values. 

6.1.2. RECOMMENDATIONS 

MHD fluid flows involves wide area of study among which have not been considered in this project. It is 

recommended that future researchers extend this work considering the following; 

1. The experimental results of our research to help in the comparison to these numerical results. 

2. Fluid flow between two moving plates across a variable magnetic field. 

3. Flow of fluids with variable thermal conductivity. 

4. Flow of fluids with variable viscosity. 

5. Hall current effects on flows in turbulent boundary layer. 

6. Flow of fluids when the variable magnetic field is at an angle to the plate. 
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