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ABSTRACT
The purpose of this study is to present the optimal homotopy asymptotic method (OHAM) for solving two-
dimensional linear and nonlinear Fredholm integral equations of the first kind. Several examples are illustrated to
show that the method is effective and simple to apply for solving two-dimensional linear and nonlinear Fredholm
integral equations of the first kind.
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1. INTRODUCTION

In recent years, several methods have been used to approximate the solution of one and two- dimensional linear and
nonlinear integral equations of the first kind by researchers in mathematics, physics and engineering. Goswami et al.
[1] presented wavelets on a bounded interval for solving integral equations of the first kind. An algorithm to handle
the ill-posed linear and non-linear Fredholm integral equations of the first kind was proposed by Molabahrami [2].
Tari and Shahmorad [3] used operational Tau method to approximate the solution of two-dimensional linear
Volterra integral equations of the first kind. An adaptive multiscale moment method for solving two-dimensional
Fredholm integral equation of the first kind was developed by Su and Sarkar [4]. McKee et al. [5] presented Euler
method for solving two-dimensional Volterra integral equations of the first kind. Su and Sarkar [6] used multiscale
moment method to solve Fredholm integral equation of the first kind whilst Bazrafshan et al. [7] used homotopy
analysis method to solve two-dimensional integral equations.

The optimal homotopy asymptotic method (OHAM) has been used by Almousa and Ismail [8] to solve linear
Fredholm integral equations of the first kind and they reported that OHAM was effective and simple in solving these
equations.

The purpose of this study is to present the OHAM, which was introduced by Marinca and Herisanu [9-12], for
solving two-dimensional linear and nonlinear integral equations of the first kind. Consider the general form of two-
dimensional Fredholm integral equation of the first kind is

fl.y) = Jf J:E k(r.v, 5t (gls, £)"dsdt, nelN 1)

where @, b, ¢ and d are constants, k(x, v, 5, t} is the given kernel and f(x.¥) isaknown function. When n =1
we have the linear case and when n = 2 we have the nonlinear case.

2. DESCRIPTION OF THE METHOD TO TWO-DIMENSIONAL FREDHOLM LINEAR AND
NONLINEAR INTEGRAL EQUATIONS OF THE FIRST KIND
To explain the optimal homotopy asymptotic method for solving two-dimensional linear and nonlinear integral

equations of the first kind, we shall follow the approach of [9-12] and other papers. Let us rewrite Eq. (1) in the
following form:

FGy) = [ [ k(e y5,6(g(s, ) dsdt = 0, neN @)

To derive the solutions by using the OHAM, consider a family of equations for an embedding parameter g € [0.1]
as follows:

L(gC.y.p)) = g(x.y)
N(gCe,y.p)) = = [} [Fk(x, v, 5.0 (g(s, ))"dsdt, n e N

354



IJRRAS 17 (3) e December 2013 Almousa & Ismail ¢ Two-Dimensional Fredholm Integral Equations

glx,v.p): 2% [01] =R
which satisfies
(- pLlgGy.p)) + FG.3)] = HE) [L(g(x.y.p)) + Fx.3) + N(gle.y. p))1. 3)

where the non-zero auxiliary function Hip) = £, ¢; p/ where ¢;,j = 1,2, ... are auxiliary constants. When p = 0
and g = 1, it holds that

glx,v.0) =g, (x.yv), glx,y1) = glx,y) (4)
respectively. Expand the approximate solution in Taylor’s series about pas follows:
a(xy.p.c) =g,Gey) + Tncy gz v g)p™j =1.2... ®)
If Eq. (5) is convergent at # = 1, then we obtain:
glx.y.1.c) = go e y) + Ticy gz v gi). = 1.2, ©)

By replacing Eq. (6) into Eq. (3), we obtain the zeroth order problem, the first order problem and the mth -order
problem as follows:

0(p°) golx.v) = —Fx. ). (7)
0(p*) g, (x.v) = —c, J:: J;d k(x,v.5t)(gyls, £))"dsdt, nelN. (8)

0(p™): g (x.¥) = g (e 9) +EM0 6 g i) + 2050 e Nt g0 (90 g0 () e gy (e 9)
_ci"l". .IF: .I:_-I: k{.r_. :l-".l =N t:l {3[_\{5; t:]}n.:m = 2_.3_. o (9)

where Np._; ( golx.v), g, (. v), oov. g —1 (x. %)) are the coefficient of p™ " in the expansion of N (g (x. p)) about p:
N(g(xy.p.¢)) = Nplgo(x.30) + Epcy Nenl(go (90, g1 Ge 9 o g G 9) Jp™ j = 1.2, (10)
For calculating the constants ¢, ¢z, €5, .... cOnsider the result of the mth-order approximations as follows:

g™ (xy.¢) =fley) +ER gi(xny.g)j=12..m (11)
Using Eqg. (11) into Eqg. (1), we can obtain the residual for j = 1.2, ...

R(x.y.6) = gole.y) = f JF kx,y, 5.0 (g™ (s, ) dsdt. (12)

If R(x.y.c;) =0, then g™(x.v.¢;) represent the exact solution. The least squares can be used to determine
€;.C5. C3. - . At first, we consider the functional

-
Jr{':_i'} = -r: -rr k- {_r,y, cj-}d_rd}-‘, (13)
and by using Galerkin’s method, we have
4 B o~d R
2 = Ja e R(xy.6); - dxdy, (14)

and then minimizing it to obtain the values of cy.€z. €3, «. €4 We have
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4 _4_ .4 _g (15)

dey - dig - dig
3. NUMERICAL EXAMPLE AND DISCUSSION
In this section, two examples of two-dimensional Fredholm integral equations of the first kind were solved to show
effectiveness of the OHAM as an approximate analytical solution method.

Example 1. Consider the two-dimensional linear Fredholm integral equation of the first kind with the exact solution

glx.y) = J_i [2]

2P — 1) = [y [ ¥ tgls, fdsat, (16)

To derive the solutions by using the OHAM, let

LgCe.yp)) = g(x¥) a7)
N(gCr.y.p)) = — [y fy &7+ g(s, ) dsdt (18)
f':x:j-’:] = (%{g: _ 1]EI+}') (19)

which satisfies

(1 - pl(gyx.v) + pg, (x.v) + pPga (. y) + ) +{$ (e —11e**¥)] = (pey + ple; +pies + - Mgy (x. )
+28:(0y) + 9200 y) +0) + (G (o7 — 10687 ) = [7 [y 95 (go(s.6) + pgy(5.6) + p7 g, (s.)

+ - )dsdt]. (20)

By using Egs. (7- 9), we obtain a series of problems

O0(P"): golx.y) = —{f{e: - ljg“l'). 1)
Q{ 1:]- ':.1’ :] — J"l_l"l E+y+I+T {S :]
prliginyl =5y o Jo g o .t dsdf. (22)
0(p?)g,(x.v) =1 +¢)g (. y) — ¢y fnl fnl g¥tV+ittg (5, thdsdt — ¢, fnl fnl girrytittg (s, tldsdt. (23)
Hence, the solutions are
0(P*): gyl ) = — (2(e? — 1)),
—3 g i . 2 . 1 .
ﬂ{?ljlﬂl{xaf}’j = _EL{? ¥ty o ;gx ¥y - gXty+d _ ;g.r +_'|.+E\:]I
0(p*): g, (x.v) = -Q1 ) TEoxwy+r o Lowey 0 B oweysd L xeyes) _ o o5 xeysz _ L x4y
prlg iyl = + cyley s € +Be -I—Ee o€ '5'1{!: cy,e 2 G

5 . 5 - 5 r 1 r -3 T 1 r 2 . 1 .
= X+y+4 4 2 X+y+6 _ 2 X+Y+E 5 & X+y+10+ TS X+Y+I 4 D ox+y 4 B ox+y+4 _ D _x+y+6
s C1f +15 Cy8 o, C1f +!: cy 8 V-6 € -I—Ee? -I—Bg o€ .

Adding the equations g (x. v}, g4 (x. %) and g, (x.3), we obtain

1 e . -3 . 1 . 2 . 1 . -3 "
E{xa}’:] — _(;{g‘ _ ljgxﬂ.) —c (? gX+I+I _l_;g.'t’+_'|. +;gx+_1.+4 _;g.r+].+5-) 01+ Cljcl(?g:rﬂh +
L x4y 3 3 _x+yssa _ L r+_1.'+Eu:I 5 E+¥+2 i Xy 5 r+y+d 4, 2 r+y+6 _ 5 E+y+E
-g -g —-g —cy(—icye —— 8 ——y8 —cCy 8 — =8
& + g g l{z: 1 az L 16 L + 16 L az L
+_Clgx+_1.+ln:] —c, (?grﬂ.h +;gr+_'|. +;gr+_1.+4__gx+_1.+ﬁ)l (24)

32 B

By using Egs. (11— 15), we can calculate the constants ¢; and ¢, i.e.
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Now, we substitute the constants ¢; and 5 in Eq. (24), so the solution is given by:

In the table 1, we show some numerical results of these solutions calculated according to the present method.

Table 1: Numerical results of Example 1.

glx,v) = 0.3130352966%*7,

c; = 0.1075933438, ¢, = —0.001033138438,

xy) Bexact Bowam \Gexact — Goran |

(0,0) 0.3130352854 0.313035296 1.06 x 10°*
(0.1,0.2) 03823426109 0.3823421739 1.30 x 10°¢
(0.2,0.2) 0.4669937701 0.4669937859 1.58 x 10-¢
(0.3,0.3) 0.5703874786 0.5703874979 1.93 x 10°¢
(0.4,0.4) 0.6966728396 0.6966728632 236 x 10°¢
(0.5,0.5) 0.8509181278 0.8509181566 2.88 x10°¢
(0.6,0.6) 1.039313749 1.039313784 3.5x 1078
(0.7,0.7) 1.269420679 1.269420722 4.3x 107"
(0.8,0.8) 1.550473918 1.550473971 5.3x 1078
(0.9,0.9) 1.893753121 1.893753185 B 1078
(1.0,1.0) 2.313035285 2.313035363 7.7 % 1078

Almousa & Ismail ¢ Two-Dimensional Fredholm Integral Equations

(25)

The exact solution, OHAM solution and absolute error of the Example 1 are shown in Figure 1. This example shows

the efficiency of the method for two-dimensional linear Fredholm integral equation of the first kind.

(a) Exact solution for example 1

(b) OHAM solution for example 1
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(c) Absolute error for example 1
Figure 1: (a) Exact solution, (b) OHAM solution and (c) Absolute error for Example 1.

Example 2. Consider the two-dimensional nonlinear Fredholm integral equation of the first kind with the exact
D.6E41 TE S4B

solution glx,y ) = oy 12
E-.':+_}-~. = -rnlJFLIIHHEI (g(s. t)) dsdt, (26)
To derive the solutions by using the OHAM, let o
Lg.yp)) = 90x) ﬁ @7)
N(gGe.y.p)) = = 3 J; 22 (g, 09)asae (28)
fley) = {5|1+_].~.) (29)

which satisfies
1 - plgo(e.y) +pg: (y) + 97020 y) + ) + ()1 = or + 22 pPe + (g y) + pga (. y)

) Jf -If:l.:rlj_+.3+t“I {ED{S £) +]‘3‘£‘1{5 £l + pt _g..'::s £+ - :| dsdt]. (30)

+p2g. e v) + ) +(5 o

By using Egs. (7-9), we obtain a series of problems
0(P%): golx, y) = _(E-i!.+.]-':l)' )

0(p1): g, Ge.y) = =, f; Iy 5225 gy (s, ) st (32)

x(1+E+1)

(go(s.£))dsdt.  (33)

7 1 p1x(1 £l 1,1
D{?‘]:E:{IJ_Y] = {1 +5'1:].E‘1':IJF:] _zﬂl.rp rpr 1-:.:'- ED{S’t]gl{s’t:]det_cﬂ .I::. .I:_w:
Hence, the solutions are

0(P*): gy, ) = — (=),

BLL+Y)
1 x(F+EIn02Y)
G 1 . V) = — —p, /==,
(plgley) = - e ™
- 1 yl3+elnlzi) 1 - (r[l;+491u[:3+54.31u.j2:.:.1_:) 1 (x.'!+9'l|:||'!"|"|)
L = —— _ cq= — = Cq —_—
G{P ) 3*{:"-*}] BE4 e +C1]C1( 1+y ) grzog L 1+y B4 © 1+y

Adding the equations g, (x. v}, g4 (x. v} and g, (x.v), we obtain
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N x 1 om@Es+elngay 1 x(2+elnl2)) 1 7 (x[g+42In(2) +64(In(2))?) 1
glr.y) = - (sr_u_}-:.) TEa T 14y zea a+ C’-]C’-( 14y J T aza0e U1 ( 14y J T
x3+8In(2))
( :|_+_]; )' (34)
By using Egs. (11— 15), we can calculate the constants ¢; and ¢, i.e.
£, = —16.85161027, ¢, = —370.0024403.
Now, we substitute the constants ¢; and ¢; in Eq. (34), so the solution is given by:
gley) = CES4LTES4SOX (35)

1+.].'
In the table 2, we show some numerical results of these solutions calculated according to the present method.

Table 2: Numerical results of Example 2.

Ié‘emcr - EDHA.MI

xy) Hexace Bowam

(0,0) 0 0 0
(0.1,0.1) 0.06219804982 0.06219804991 9x 10°
(0.2,0.2) 0.1140297580 0.1140297582 2x10-10
(0.3,0.3) 0.1578873572 0.1578873575 3x 10°
(0.4,0.4) 0.1954795851 0.1954795854 3x 1070
(0.5,0.5) 0.2280595160 0.2280595163 3x 1070
(0.6,0.6) 0.2565669555 0.2565669559 41070
(0.7,0.7) 0.2817205786 0.2817205790 41070
(0.8,0.8) 0.3040793547 0.3040793551 4% 10-10
(0.9,0.9) 0.3240845754 0.3240845758 4x 1070

(1,2 0.3420892740 0.3420892745 5107

The exact solution, OHAM solution and absolute error of the Example 2 are shown in Figure 2. This example shows
the efficiency of the method for two-dimensional nonlinear Fredholm integral equation of the first kind.
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(a) Exact solution for example 2 (b) OHAM solution for example 2
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(c) Absolute error for Example 2
Figure 2: (a) Exact solution, (b) OHAM solution and (c) Absolute error for Example 2.

4. CONCLUSIONS

In this paper, we have described the application of the OHAM for solving two-dimensional linear and nonlinear
Fredholm integral equations of the first kind. The results indicated that the method is feasible, effective and simple
for solving two-dimensional linear and nonlinear Fredholm integral equations of the first kind. Maple software with
long format and double accuracy was used to carry out the computations.
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