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ABSTRACT 

In this paper, the problem of delay-dependent stability criteria for neutral systems with mixed time-varying delays 

and nonlinear perturbations is considered. Based on the new Lyapunov-Krasovskii functional, Leibniz-Newton 

formula, decomposition technique of coefficient matrix, utilization of zero equations, model transformation and 

linear matrix inequality, new delay-dependent stability criteria are established in terms of linear matrix inequalities 

(LMIs). Numerical examples show that the proposed criteria improve the existing results significantly with much 

less computational effort.     
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1. INTRODUCTION 

1cm During the past several years, the problem of stability for neutral differential systems, which have delays in 

both its state and the derivatives of its states, has been widely investigated by many researchers, especially in the last 

decade. Because neutral systems with delays can be found in such places as population ecology, distributed 

networks containing lossless transmission lines, heat exchangers, robots in contact with rigid environments, etc (e.g., 

[12]-[14],[22]). It is well known that time delay and nonlinearities, as time delays, may cause instability and poor 

performance of practical systems such as engineering, biology, economics, and so on [5]. Stability criteria for delay 

systems can be classified into two categories: delay-independent and delay-dependent criteria. Delay-independent 

criteria do not employ any information on the size of the delay; while delay-dependent criteria make use of such 

information at different levels. Delay-dependent stability conditions are generally less conservative than delay-

independent one especially when the delay is small [32]. 

Recently, many researchers have been studied the problem of stability for neutral time-delay systems with nonlinear 

perturbations such as [36] considers the delay-dependent robust stability of neutral systems with mixed delays and 

nonlinear perturbations. In [31], novel delay-dependent asymptotical stability of neutral systems with nonlinear 

perturbations is studied. In [29], he proposed on exponential stability of neutral delay differential system with 

nonlinear uncertainties by using Lyapunov method. The problem of the robust exponential stability of uncertain 

neutral systems with time-varying delays and nonlinear perturbations has been studied in [4]. In [26], they have been 

studied delay-dependent robust stability problem for neutral system with mixed time-varying delays. The 

uncertainties under consideration are nonlinear time-varying parameter perturbations and norm-bounded 

uncertainties, respectively. 

In this paper, the problem of delay-dependent stability criteria for neutral systems with mixed time-varying delays 

and nonlinear perturbations is studied. Based on combination of Leibniz-Newton formula, decomposition technique 

of coefficient matrix, linear matrix inequality and the use of suitable Lyapunov-Krasovskii functional, new delay-

dependent exponential stability criteria will be obtained in terms of LMIs. Finally, numerical examples will be given 

to show the effectiveness of the obtained results. 

 

2.      PROBLEM STATEMENT AND PRELIMINARIES 

1cm We introduce some notations and lemmas that will be used throughout the paper. 
R  denotes the set of all real 

non-negative numbers; 
nR  denotes the n -dimensional space with the vector norm  ; x  denotes the Euclidean 

vector norm of 
nRx ; A  denotes the spectral norm of matrix A; 

rnR 
 denotes the set of rn  real matrices; 

TA  denotes the transpose of the matrix A ; A  is symmetric if 
TAA = ; I  denotes the identity matrix; )(A  

denotes the set of all eigenvalues of A ; )}(:{max=)(max AeRA   ; 
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)}(:{min=)(min AeRA   ; matrix A  is called semi-positive definite ( 0A ) if 0AxxT
, for all 

;nRx  A  is positive definite ( 0>A ) if 0>AxxT
 for all 0x ; matrix B  is called semi-negative definite 

( 0B ) if 0BxxT
, for all ;nRx  B  is negative definite ( 0<B ) if 0<BxxT

 for all 0x ; BA >  

means 0>BA  0)<( AB ; BA  means 0 BA  0)(  AB ; ),0],([ nRbC   denotes the space 

of all continuous vector functions mapping ,0][ b  into 
nR  where ],[max= rhb . 

Consider system described by the following state equations of the form  

 















,0],[),(=)(),(=)(

0;>))),((,()))((,(

))(,())(())(()(=)(

btttxttx

ttrtxtwthtxtg

txtftrtxCthtBxtAxtx

 





 (2.1) 

 where 
nRtx )(  is the state, A , B  and C  are given constant matrices of appropriate dimensions. )(th  and 

)(tr  are discrete and neutral time-varying delays, respectively,  

 ,)(,)(0 dhthhth    (2.2) 

  

 ,)(,)(0 drtrrtr    (2.3) 

 where h  and r  are given positive real constants representing upper bounds of discrete and neutral delays, 

respectively, dd rh ,  are given positive real constants. Consider the initial functions ),0],([)(),( nRbCtt   

with the norm  )(sup=
,0][

t
bt




 and  )(sup=
,0][

t
bt




. The uncertainties (.)(.), gf  and (.)w  

represent the nonlinear parameter perturbations with respect to the current state )(tx , discrete delayed state 

))(( thtx   and neutral delayed state ))(( trtx  , respectively, and are bounded in magnitude:  

 ),()())(,())(,( 2 txtxtxtftxtf TT   (2.4) 

 )),(())(()))((,()))((,( 2 thtxthtxthtxtgthtxtg TT    (2.5) 

 )),(())(()))((,()))((,( 2 trtxtrtxtrtxtwtrtxtw TT     (2.6) 

 where  ,,  are given positive real constants. In order to improve the bound of the discrete delayed )(th  in 

system (2.1), let us decompose the constant matrix B  as  

 ,= 21 BBB   (2.7) 

 where 
nnBB R21,  are constant matrices. By Leibniz-Newton formula, we have  

 0.=)())(()(
)(

dssxthtxtx
t

tht
  (2.8) 

 By utilizing the following zero equation, we obtain  

 0,=)())(()(
)(

dssxEthtExtEx
t

tht



  (2.9) 

 where   is given positive real constant and 
nnE   will be chosen to guarantee the asymptotic stability of 

system (2.1). By (2.7)-(2.9), system (2.1) can be represented in the form of a neutral system with discrete and 

distributed delays and nonlinear perturbations  

 

)))((,())(,())(())(()(][=)( 21 thtxtgtxtfthtExthtxBtxEBAtx    

 .)()())(()))((,(
)()(

1 dssxEdssxBtrtxCtrtxtw
t

tht

t

tht
  




 (2.10) 

  

Lemma 2.1 (Jensen's inequality) [5] For any constant matrix 0>=, Tnn QQRQ  , scalar 0>h , vector 

function 
nRhx ][0,:  such that the integrations concerned are well defined, then  
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 Rearranging the term dstsx
h

)(
0

   with )()( htxtx  , we can yield the following inequality:  
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 Lemma 2.2 [34]  Let 
nRtx )(  be a vector-valued function with first-order continuous-derivative entries. Then, 

the following integral inequality holds for any matrices ,51,2,=,, iRMX nn

i

  and a scalar function 

:0)(:= thh   
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 where  

 0.
542

431
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
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

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
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


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3.  MAIN RESULTS 
In this section, we present the stability conditions dependent on time-varying delays of neutral system (2.1) via 

linear matrix inequality (LMI) approach. We introduce the following notations for later use, 

 

 ,][= 1212,  ji  (3.1) 

 where 121,2,3,...,=,,= ,, jiT

ijji   and ,= 11 EPW  

 

2995511111111111,1 = PQAAQQQQQWWPBBPPAAP TTTTTTT   

12

2

11

22

10

2

8

22

6683

2

1153 44 PhPhPhMhhMhMPMhhMhMPP TT    

TTTTTT QQQQBPLAALKKNNIPh 9621211,2111111

2

113

22 =,    

75311,3122124

2

21510 =, QQQWBLLAKNNMhhMhMPQA TTTTTT   

129841,431339

22

76811 =, QAQQQLAKKNMhhMhMPQA TTTTTT    

,4=,4=, 666111,6555101,51444 LAKNhPLAKNhPLLAKN TTTT    

,=,= 8188511,877171111,7 LAKKNQWLAKNNQBP TTTTTT   

,=,= 1101010911,101999911,9

TTTTTT LLAKNQPLLAKNQP   

,=,= 1121212911,121111111911,11

TTTTTT LLAKNQPCLLAKNCQCP   
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2225

2

225221010222,2 = NNIMhhMhMPPhPQBBQQQ TT

d

TTT    

TTTTTTT QQLBKNQBQQLBBL 1042,432311632,322 =,=,   

722,7662,6552,524412 =,=,=, NQLBNLBNLLBNQB TTTTTT   

TTTTTTTTT QLLBNQLBKNQLBN 102,10299102,982862,872 =,=,=,   

,=,=, 21212102,1221111102,1121010

TTTTTTTT LLBNQCLLBNCQLLBN   

TTT

d

T QQKKMhhMhMPPhPQQ 1183,43310

22

77833773,3 =,=    

,=,=,=,=, 3873,87333,763,653,534

TTTTT KKQKNQKKLK   

,=,=,= 311113,11310113,1039113,9 CLKCQLKQLKQ TTTTTT   

8

22
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22
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2

12124,4312113,12 =,= PhPhPhPhPhQQLKQ TTT    

,=,=,=, 7444,764,654,5441411

4

10

4

9

22 LNQLLLLPPhPhPh TTT   

,=,=,= 104124,1094124,98484,8 LLQLLQLKQ TTTTTT   

TTT QLCLCQ 124,12114124,11 =,=   

,=,=,=,=0,=,4=, 55,1055,955,855,75,612105,5124

TTTTT LLKNPPLL   

,=,= 55,1255,11

TT LCL   

,=,=,4= 66,866,713116,6

TT KNPP   

;=,=,=,= 66,1266,1166,1066,9

TTTT LCLLL   

97,9787,87747,7 =,=,= NKNNNP TT   

,=,=,=, 7127,127117,117107,107

TTTT LNCLNLNL   

TKP 878,8 =   

,=,=,=,=, 8128,128118,118108,10898,98

TTTT LKCLKLKLKK   

,=,=,=,= 9129,129119,119109,109919,9

TTTT LLCLLLLLLI    

,=,=,= 101210,12101110,111010210,10

TTT LLCLLLLI    

,=,= 121111,121111

2

3141411,11 LCLLCCLIPrP TTTT

d    

,= 1212312,12 LLI T    

 

and 

 

 .=))((,=))(( )()( thth xthtxxthtx     

  

Theorem 3.1  For 1<C  and given positive real constants  ,,,,,, dd rrhh  and  , the system (2.1) is 

asymptotically stable, if there exist positive definite symmetric matrices sP , ,141,2,= s , any appropriate 

dimensional matrices ,12,1,2,=,,,,, iMLKNQ jiiii  ,101,2,= j  and positive real constants 21,  

and 3  such that the following symmetric linear matrix inequalities hold:  
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 Proof. Construct a Lyapunov-Krasovskii functional candidate for the system (2.10) of the form  
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 Calculating the time derivatives of )(tVi , 91,2,3,...,=i  along the trajectory of (2.10) yields  
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 From the utilization of zero equation, the following equation is true for any real matrices ,iL  1,2,...,12=i  with 
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From (2.4)-(2.6), we obtain for any positive real constants 0>1 , 0>2  and 0,>3   

 )),(,())(,()()(0 1

2

1 txtftxtftxtx TT    (3.18) 

 ),,(),(0 )()(2)()(

2

2 thth

T

th

T

th xtgxtgxx     (3.19) 

 ))).((,()))((,())(())((0 3

2

3 trtxtwtrtxtwtrtxtrtx TT     (3.20) 

 According to (??)-(3.20), it is straightforward to see that  

 ),()()( tttV T    (3.21) 

 where   is defined in (3.1) and  

)))].((,()),(()),((),,()),(,(,)(,)(,)(,)(),(,,),([=)( )(
)()(

)()( trtxtwtrtxtrtxxtgtxtfdssxdssxdssxdssxtxxxtxt TTT

th

TTT
t

tht

T
t

tht

T
t

ht

T
t

ht

TT

th

T

th

TT 


  




 It is fact that if inequality (3.4) holds, i.e., 0< , then 0>,||||<)( 2  xtV  . This means that the system (2.1) is 

asymptotically stable. The proof of the theorem is complete.  

If 0=)))((,( trtxtw  , then system (2.1) reduces to the following system:  
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 According to method of Theorem 3.1, we can obtain the delay-dependent asymptotic stability criteria for neutral 

system (3.22) with the following Corollary 3.2.  

 

Corollary 3.2  For 1<C  and given positive real constants  ,,,,,, dd rrhh  and  , system (3.22) is 
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and 0=3  such that the following symmetric linear matrix inequalities hold:  
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 0.<][= 1111,  ji  (3.25) 

  

  

4.   NUMERICAL EXAMPLES 
In order to show the effectiveness of the approaches presented in Section 3, two numerical examples are provided. 

 

Example 4.1 Consider the delay-dependent stability criteria of neutral system (2.1) with mixed time-varying delays 

and nonlinear perturbations with  
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 Decompose the matrix 21= BBB  , where  
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 By Theorem 3.1 to the system (2.1) with (4.1) and (4.2), we can obtain the maximum upper bounds of the discrete 

time-varying delay under different values of ,  and   as shown in Table 1. From Table 1, it is easy to see that 

our results (Theorem 3.1) give a much less conservative result than those results in [7], [28], [26], [27] and [36]. The 
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 are plotted in Figure 1.  

 

Table 1 Maximum allowable time delay upper bound for h  with 0.5,=0,=0.1,= dd hr  0.1=0,=   and 

0.1=0.1,=  , respectively, and different values of .   

 

 
 



IJRRAS 16 (3) ● September 2013 Khonchaiyaphum & Mukdasai ● Stability Criteria for Neutral Systems 

 

 
 

429 

 

 

Figure  1: The simulation solutions )(1 tx  and )(2 tx  are presented for system (2.1) with (4.1) in Example 4.1 and 

initial conditions )(sin32=)(1 ttx  , )(cos22=)(2 ttx  , 2,0],[t  by using the Runge-Kutta 4th order 

method with Matlab. 

    

Example 4.2 Consider the delay-dependent stability criteria of neutral system (3.22) with time-varying delays and 

nonlinear perturbations with  
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 Table 2 lists the comparison of the upper bounds delay h  for delay-dependent stability criteria of system (3.22) 

with (4.3) by different methods in [24] and [31]. It is clear from Table 2 that our results (Corollary 3.2) are superior 

to those in [31] and [24]. The numerical solutions )(1 tx  and )(2 tx  of system (3.22) with (4.3),  

 2,=,))(()(sin0.1

))(()(cos0.1

=)))((,(,)()(cos0.2

)()(sin0.2

=))(,( 2

2

1

2

2

1

hthtxt

thtxt

thtxtgtxt

txt

txtf







































 

 are plotted in Figure 2.  

 

 

  Table 2 Upper bound of time delay h  in Example 4.2 for 0.1.=0.2,=    
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Figure  2: The simulation solutions )(1 tx  and )(2 tx  are presented for system (3.22) with (4.3) in Example 4.2 and 

initial conditions )(sin32=)(1 ttx  , )(cos22=)(2 ttx  , 2,0],[t  by using the Runge-Kutta 4th order 

method with Matlab. 

    

5.  CONCLUSIONS 
1cm The problem of delay-dependent stability criteria of neutral systems with mixed time-varying delays and 

nonlinear perturbations has been investigated. Based on the combination of model transformation, decomposition 

technique of coefficient matrix, utilization of zero equation and new Lyapunov functional with triple integral terms, 

sufficient conditions for asymptotically stability have been obtained and formulated in term of linear matrix 

inequalities (LMIs). Numerical examples have shown significant improvements over some existing results. 
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