IJRRAS 16 (3) e September 2013 www.arpapress.com/VVolumes/Vol161ssue3/IJRRAS 16 3 13.pdf

RESULTS ON DELAY-DEPENDENT STABILITY CRITERIA FOR
NEUTRAL SYSTEMS WITH MIXED TIME-VARYING DELAYS AND
NONLINEAR PERTURBATIONS

Issaraporn Khonchaiyaphum® & Kanit Mukdasai'*”
!Department of Mathematics, Faculty of Science, Khon Kaen University,
Khon Kaen 40002, Thailand
“Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand
*Corresponding author. E-mail : kanit@kku.ac.th

ABSTRACT
In this paper, the problem of delay-dependent stability criteria for neutral systems with mixed time-varying delays
and nonlinear perturbations is considered. Based on the new Lyapunov-Krasovskii functional, Leibniz-Newton
formula, decomposition technique of coefficient matrix, utilization of zero equations, model transformation and
linear matrix inequality, new delay-dependent stability criteria are established in terms of linear matrix inequalities
(LMIs). Numerical examples show that the proposed criteria improve the existing results significantly with much
less computational effort.
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1. INTRODUCTION

1cm During the past several years, the problem of stability for neutral differential systems, which have delays in
both its state and the derivatives of its states, has been widely investigated by many researchers, especially in the last
decade. Because neutral systems with delays can be found in such places as population ecology, distributed
networks containing lossless transmission lines, heat exchangers, robots in contact with rigid environments, etc (e.g.,
[12]-[14].[22]). It is well known that time delay and nonlinearities, as time delays, may cause instability and poor
performance of practical systems such as engineering, biology, economics, and so on [5]. Stability criteria for delay
systems can be classified into two categories: delay-independent and delay-dependent criteria. Delay-independent
criteria do not employ any information on the size of the delay; while delay-dependent criteria make use of such
information at different levels. Delay-dependent stability conditions are generally less conservative than delay-
independent one especially when the delay is small [32].

Recently, many researchers have been studied the problem of stability for neutral time-delay systems with nonlinear
perturbations such as [36] considers the delay-dependent robust stability of neutral systems with mixed delays and
nonlinear perturbations. In [31], novel delay-dependent asymptotical stability of neutral systems with nonlinear
perturbations is studied. In [29], he proposed on exponential stability of neutral delay differential system with
nonlinear uncertainties by using Lyapunov method. The problem of the robust exponential stability of uncertain
neutral systems with time-varying delays and nonlinear perturbations has been studied in [4]. In [26], they have been
studied delay-dependent robust stability problem for neutral system with mixed time-varying delays. The
uncertainties under consideration are nonlinear time-varying parameter perturbations and norm-bounded
uncertainties, respectively.

In this paper, the problem of delay-dependent stability criteria for neutral systems with mixed time-varying delays
and nonlinear perturbations is studied. Based on combination of Leibniz-Newton formula, decomposition technique
of coefficient matrix, linear matrix inequality and the use of suitable Lyapunov-Krasovskii functional, new delay-
dependent exponential stability criteria will be obtained in terms of LMIs. Finally, numerical examples will be given
to show the effectiveness of the obtained results.

2. PROBLEM STATEMENT AND PRELIMINARIES
1cm We introduce some notations and lemmas that will be used throughout the paper. R™ denotes the set of all real
non-negative numbers; R" denotes the N -dimensional space with the vector norm ||-||; |K|| denotes the Euclidean

vector norm of X € R"; |A|| denotes the spectral norm of matrix A; R™" denotes the set of Nx I real matrices;
AT denotes the transpose of the matrix A; A is symmetric if A= AT; | denotes the identity matrix; A(A)
denotes  the  set of  all  eigenvalues  of A; Arex (A) = max{Re A : 1 € A(A)};
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A (A) =min{Re A : A € A(A)}; matrix A is called semi-positive definite (A>0) if X" Ax >0, for all
xeR"; A is positive definite (A>0) if X" Ax >0 for all X 0; matrix B is called semi-negative definite
(B<0)if x'Bx<O0, forall xeR"; B is negative definite (B <0) if X'Bx<0 forall x0; A>B
means A—B>0 (B—A<0); A>B means A—B>0 (B—A<0); C([-b,0],R") denotes the space
of all continuous vector functions mapping [—b,0] into R" where b = max[h, r].
Consider system described by the following state equations of the form
X(t) = Ax(t) + Bx(t — h(t)) + Cx(t —r(t)) + f(t, x(t))
+ g(t, x(t — h(t))) + w(t, x(t — r(t))), t>0; (2.1)

X(0) =4, x(t) =), te[-b,0],
where X(t) € R" is the state, A, B and C are given constant matrices of appropriate dimensions. h(t) and
r(t) are discrete and neutral time-varying delays, respectively,

0<h()<h, h(t)<h,, (2.2)

o<sr@)<r, rt)<r, (2.3)
where h and r are given positive real constants representing upper bounds of discrete and neutral delays,
respectively, h,,r, are given positive real constants. Consider the initial functions ¢@(t),y(t) € C([-b,0],R")
with the norm || =sup,_, POl and [jwl] = sup,_, o lkr (Il The uncertainties f(.),g(.) and w(.)
represent the nonlinear parameter perturbations with respect to the current state X(t), discrete delayed state
X(t—h(t)) and neutral delayed state X(t —r(t)), respectively, and are bounded in magnitude:

£7(t, x() f (t,x(t)) < n>x" (t)x(t), (2.4)
g’ (t, x(t—h(t)))g(t, x(t —h(t))) < p*x" (t—h(t))x(t —h(t)), (2.5)
W' (t, X(t—r(0))w(t, X(t —r(t))) < y°X" (t—r(t))x(t —r(t)), (2.6)

where 77, p, 7 are given positive real constants. In order to improve the bound of the discrete delayed h(t) in
system (2.1), let us decompose the constant matrix B as

B=B,+B,, 2.7)
where B, B, € R™" are constant matrices. By Leibniz-Newton formula, we have
t _
x(t) — x(t —h(t)) — L L X(©)ds =0, (2.8)
By utilizing the following zero equation, we obtain
t . _
Ex(t) — Ex(t —oh(t)) — E jt X8 =0, (2.9)

where ¢ is given positive real constant and E € R™" will be chosen to guarantee the asymptotic stability of
system (2.1). By (2.7)-(2.9), system (2.1) can be represented in the form of a neutral system with discrete and
distributed delays and nonlinear perturbations

%(t) = [A+ B, + EJX(t) + B,x(t — h(t)) — Ex(t — eh(t)) + f (t, X(t)) + g(t, x(t — h(t)))
+W(t,X(t - r(1))) + CX(t—r (1)~ B, | ih(t)x(s)ds —Ef iah(t)x(s)ds. (2.10)

Lemma 2.1 (Jensen's inequality) [5] For any constant matrix Q € R™,Q = Q" >0, scalar h> 0, vector

function X :[0,h] — R" such that the integrations concerned are well defined, then
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[ X7 (s + )Qx(s + s < ([ x(s +)ds) Q(J” (s + )ds).

0
Rearranging the term I h)'((S +1t)ds with x(t) — x(t —h), we can yield the following inequality:

T

) xt) 1[-Q Q| x
—hj_th(s+t)Q>'<(s+t)dss xt-h)| | Q -QJx(t=h)|

Lemma 2.2 [34] Let X(t) € R" be a vector-valued function with first-order continuous-derivative entries. Then,

the following integral inequality holds for any matrices X, M, e R™,i =1,2,...,5 and a scalar function
h:=h(t)>0:

T

x(t) M +M;, —M+M, [ x()
[ XTE)Xx(S)ds <[ x(t-h) | [-M,+M] -M] M, | x(t-h)

T

X(t) M, M,| x()
+hl x(t=h)| IM; M, [ x(t-h)|,

where
X M, M,
MlT M, M, S0,
M, M, M,

3. MAIN RESULTS
In this section, we present the stability conditions dependent on time-varying delays of neutral system (2.1) via
linear matrix inequality (LMI) approach. We introduce the following notations for later use,

Z = [zi,j]12x12’ (3.1
where Z; ; =>',i,j=1,2,3,..,12 and W, = RE,

jirh

T, =PA+ATP +PB +B R +W, +W, +Q +Q +Q; +Q; +Q; A+ A'Q, +P,
+P,—P, +hM, +hM, +h’M, — B, + ahM/ + ahM, + a’h’M, —4h*P,, —4a’h*P, + h*P,
+a’h?Py+en’l +N] +N, +K] +K + A+ AL, =,=PB,-Q +Q,+Q;+Q;
+A'Q+P —hM] +hM, +h*°M, + N, =N/ + K, +A'L, + B, X,,=-W,+Q,+Q; +Q,
+A'Q,+PR,—ahM{ +chM, +a’h®M, + N, + K, — K[ +A'L,, =,,=Q,+Q,—-Q +A'Q,
+N,+K,+A'L,—L, = ,=4hP,+N;+K;+A'L;, = =4ahP,+Ng+K,+A'L,

2,.;=-PB -Q  +N, =N/ +K, + AL, %,,=-W, —-Q +N;+K; —K/ +A'L,

To=B+Q +Ng+Kg+ ATy +L, =, ;=P +Qg + N+ K, +A"L,+L,

211 =PC+QC+N,+K,+A'L,+LC, Z,,,=R+Qq +N,+K,+A"L,+L],
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=-Q, -Q,+Q/B+B'Q,~P,+h,P,—P,—hM] —hM, +h’M, +&,0l —=N] —N,
+L,B+B'L,, %,,=-Q,-Q; +B'Q,-N,—K; +B'L,, %,,=-Q,-Qf
+BTQ12—N4+BTL4—L£, 2,s=-N;+B'L;, %,,=-N;+B'L;, %,,=-Q, —-N,
—N,; +B'L,, %,,=-Q -Ng—K; +B'L;, Z,,=Q—-Ng+B'Ly+L;, Z,,,=Qj
—N+B'Ly+L, %,,=QC-N,+B'L,+LC, %,,,=Q,—N,+B'L,+L,

=-Q; —Q7—Pg+ath3—F§3—ahM7T —ahM7+a2h2Mm—K; K, Z,,=-Q-Q,
—K4—Lg, Ts=-Ks, Zis=-Kg Z,,=-Q; —N; —K,, Z,,=-0Q; —-K;—Kj,

0= QKo+, Z,,,=Q) - O+L3 2 =QC- K1+L3C
T =QL-K,+Ll, =,,=-Q),- Q12+hP+hP+hP+052hP+0:h2
+a’h®R, +h*B,+h*R,+P,-L,-L,, Z,s=-L, Z,,=-L, =,,=-Q; —-N, -
=-Q; —K; - L, 24,9=Q12+L1—Lg, 4107 Q%+ L, — Lo,
Zun=QL+LC-L,%, ,=Q)
+L,-L, Z5=-4B,-P, =0, Z,,=-NJ, Z,,=-KJ, Z,=L;, Z,,=Lg,
511 LSC 2512 LS'
6,6:_4P11_P13’ 267:_Ng1 ZGSZ_K(I’
Teo= Ly, Ze=Ls, Zgn=LC, Zg,= L
2,,==P,=N; =N,;, =,,=-Ng—K;, Z,,=-N,
+L, Z,,,=-Ny+L;, =,,,=-N,+LC, %,,=-N,+Lj,
Tas=—P —Kg
Ky, Zgo=-Ko+ly, Zgio=-Kp+ly, Zg,=-K,+L4C, Z,=-K,+Lg,
oo = —gl +1 +L, Z910= Lo+ Ly, 2o = L, +LC, Zon=L,+ LS,
2010= —&,1 + L, + Ly, 201" L,+L4.C, Zo12= L, + Lo,
Sun=-Pa+rP,+&y 145 C+C'L,, =, ,=L,+CTL,,
)y

1212 = &3l +L12+ Ly,

and
X(t=h(D) = Xy » X~ aN(D)) = X -

Theorem 3.1 For |||+ » <1 and given positive real constants z,h,h,,r,r,,77, p and 7, the system (2.1) is
asymptotically stable, if there exist positive definite symmetric matrices P,, s =1,2,...,14, any appropriate
dimensional matrices Q,, N, K;, L, M 1=12,...,12, j=1,2,...,10 and positive real constants &, &,

and & such that the following symmetric Imear matrix inequalities hold:
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P6 Iv'l MZ
M M, M, S0
M] M, M|
P, M, M,
M;Sr MS Mg >0
M7 Mg M|

> <.

Proof. Construct a Lyapunov-Krasovskii functional candidate for the system (2.10) of the form

V()= E/i ®),

Vi (t) = " (t)Px(t)

Tr _

where

Cx@ ][ 0 0 OJR 0 0 O x(t)]
Xpy |10 0 0 0)Q Q Qi Q| Xy
=1 Xoah 0 0001Q Q Q Q Xan(t |
X() |10 0 0 01Q, Qp Qu Q| X(t)

VZ_(t) = t:h(t_)xT (s) sz(s);al_s ~ [ X ©PX(S)s,
V, (1) = h joh [ X @)IP, + P, + P,Ix(O)dets,
V,(t) = ah j°ah [ £ @)1P, +P, +RIx(@)das,

V, (t) = 2h? jOh jj [ X (s)Pox(s)dsddo,

V, (t) = 2(cth)? joom j: [ X" ()P, x(s)dsddo,

V, () = h j"h [ X" @)P.x@)das,
V,(t) = ah j°ah [ X @)Px(©)das,

V,(t) = It t_r(t)xT (s)P,,X(s)ds.

Calculating the time derivatives of V, (t), i =1,2,3,...,9 along the trajectory of (2.10) yields
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O ]
X h)

Vl(t) =2 Xy

X(t)

_ X() _
X ety
X_oh(t)

()

o o o .U

where
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P Q Q Q]

0 Q Q Q| O

0 Q Q Q.| O

0 Q Q Q| O

Q Q Q[

Q Q Qp|

Q Q Q)] (3.6)
Q. Q Q)%

Q =[A+B, +EJX(t) + BX ) = EX oy + F (6 X(1)) + 9(t, X))
FW(ELX(E- (D) + CX(E-r (1)) - B, | t_h(t)f((s)ds -E[ t_m(t)i((s)ds,

t
Q, = X(t) ~ X g — jt x(s)ds,

-h(t)

t
Q= X(8) X ey — jt %(s)ds,

—ah(t)

Q, = AX(t) + Bx iy + T (£, X(1) + g (t, X)) + (L, X(t =1 (1)) + Cx(t —r(t)) — X().
By Lemma 2.1 and 2.2 with (3.2)-(3.3), we obtain

V, () = X" (©)P,X(t) = (L~ A Xy PoX iy + X @)PX() = (1= AN X ) PoX
. X (E)PX(t) - Xl—h(t) P X oy +hy Xih(t) P X n + X" ())Px(t) - Xl—dﬂ(t) PX ncey

;
+ahy X o PoX oty

x®) [P,
+| X P,

x(t) T M +M,

(37)
V,(®) =h*X" OIP, + R, + RO —h[ t_th (S)[P, + P, + P,]X(s)ds
h2X" (D[P, + P, +RIx®) - [ X"()dsP, [ x(s)ds
”» 477576 t—h(t) 4 ne
P, | x(t) X(t) | M; M, | x(t)
-F X ht) +h? X n MI M; X ho)
~M;] +M, [ x(t)
-M +M; My -M, | X, |, (3.8)

+h X ety

V() = (@)X OP, + P, + RIK® —ah| X' (S)[P, + P, + RIX(s)

(@)X OIF, +R+RIXO- [, X (S)dP [ | x(s)ds
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x) T[-R R T x® [ x(®) TMe M, T x(t)
1 Xoohe B R X |t (ah)? X_oh(t) My My, X_oh(t)
xt) T MI+M;  —MT+M, T x(t)

+oh X gy =M +M7 =M7 =M, | X | (3.9)

V() = WX OB 22 [ [ X7 ()RX(s)dsdo

« W7 (©)PX() - 4 () - | ith (5)ds)" Po(hx(t) - | ihx(s)ds)], (3.10)

. 4.T . 2 0 ot LT .

Ve () = (@) X" (OPX(O) - 2(ah)* [ [ X (s)P.X(s)dsde

T ORX(O - 4lex®) - [ x(s)ds)" Ry(ahx()— [ x(s)ds)], (3.11)

V, (t) = h®X" (t)Px(t) —h fth (t+Ss)P,x(t +s)ds

t t
. h3XT (t)Px(t) — jt X (s)dsR, jt X(s)ds, (3.12)
V,(t) = (ah)® X" (t) P, x(t) —ah J._Oth (t +5S)Px(t +s)ds
2,7 T t

(ah)? X" ()P x(t) — jt - X' (s)dsRy, jt ~ X(s)ds, (3.13)

Vo (t) = XT (DRX() — (1~ FE)X (t =T ()P Xt~ (1))

- X (OPXO) =X (t=r ()R Xt —r(t) +r, X" (t—r®)PX({t—r(t)). (3.14)
From the Leibinz-Newton formula, the following equations are true for any real matrices N;, K;, 1=1,2,...,12
with appropriate dimensions

. t t
20X ON] + X N7 + X o)NT +XONT + [ X (s)dsNS + [ X (s)dsNg
t D t D
L X AN+ [0 XT(8)dsNG + F7 (L XAING +97 (6 X )Ny
+X(E =T O)INS +W' (Xt —r())NLIX[X() = Xy = f_h(t)X(s)ds] =0, (3.15)
. t t
2[X" (K] + X1y o K; + X o Ks + XK +J.H]xT (s)dsK{ +J;ath (s)dsK{
t D t .

+ jt _thT (s)dsKT + L_ah(t,XT (s)dsKg + f 7 (&, XK +7" (t, X ) KT,

+X(=TO)K+W (€ X(E-rODKLIXIX X oy — [ iah(t)x(s)ds] =0. (3.16)
From the utilization of zero equation, the following equation is true for any real matrices L;, i=1,2,...,12 with

appropriate dimensions

t t
20X O + X0 L5 + X o Ly + XL + [ X (S)dsLE + [ x"(s)dlsLy

t . t .
+ J-t—h(t)XT (s)dsL; + J;—ah(t)XT (S)dsLy + £ (6, x(®)Ls +g' (¢ X n(ty) Lo
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+X(t—r(t)) Ly + W' (t, X(t—r () L] < [AX(t) + BX_, + (£, X(t))
+9(t, x_h(t)) +w(t, X(t—r(t))) +Cx(t—r(t))—x(@)]=0. (3.17)

From (2.4)-(2.6), we obtain for any positive real constants & >0, &, >0 and & >0,

0<gn*xT (t)x(t)—& f7(t,x(0) f (t, x(1)), (3.18)

0< gZpZXih(t)X—h(t) -5,9' (¢, X )9t X p)s (3.19)

0< &7’ X (t—r())X(t—r(t)) — ;W' (t, X(t —r(t)))w(t, x(t —r(t))). (3.20)
According to (??)-(3.20), it is straightforward to see that

V()<< (1) L), (3.21)

where Z is defined in (3.1) and
1O = X Xy Xy X O, [ X ), [ X7 (@), [ XT(6)s, [ X7 (8)ds, 7 (6 X, 7 (6 X)X (€= 1), X (= r (@)W (6 Xt =]

It is fact that if inequality (3.4) holds, i.e., Z <0, then V(t) < —¢ | X|I?,& > 0. This means that the system (2.1) is

asymptotically stable. The proof of the theorem is complete.
If w(t,X(t —r(t))) = 0, then system (2.1) reduces to the following system:
{)’((t) —Cx(t —h(t)) = Ax(t) + Bx(t — h(t)) + f (t, x(t)) + g(t, X(t — h(t))),t > O; a2
X(t) = 4(t), %) =y(t), te[-h0] '
According to method of Theorem 3.1, we can obtain the delay-dependent asymptotic stability criteria for neutral
system (3.22) with the following Corollary 3.2.

Corollary 3.2 For |C|| <1 and given positive real constants &, h,hy,r,r,,77, 0 and ¥, system (3.22) is
asymptotically stable, if there exist positive definite symmetric matrices P,, s =1,2,...,14, any appropriate
dimensional matrices Q;, N;, K;,L;, M i 1=1,2,...,11, j=1,2,...,10 and positive real constants &, &,

and &; = 0 such that the following symmetric linear matrix inequalities hold:

I P6 Iv'l MZ
T
My M, M, >0, (3.23)
MI M] M,
P, M, M,
T
Mi M$ M >0, (3.24)
M7 M9 MlO
H:[Zi,j]llxll <0. (3.25)

4. NUMERICAL EXAMPLES
In order to show the effectiveness of the approaches presented in Section 3, two numerical examples are provided.

Example 4.1 Consider the delay-dependent stability criteria of neutral system (2.1) with mixed time-varying delays
and nonlinear perturbations with
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~12 01 ~06 07 01 0
A=|-01 -1| B=| -1 -08| C=|0 01|, =0, p=0, y=0.(41)

Decompose the matrix B = B, + B, , where
-03 0.35 -0.3 0.35
B,=|-05 -04|,B,=|-05 -04] (4.2)

By Theorem 3.1 to the system (2.1) with (4.1) and (4.2), we can obtain the maximum upper bounds of the discrete
time-varying delay under different values of 77, o and y as shown in Table 1. From Table 1, it is easy to see that

our results (Theorem 3.1) give a much less conservative result than those results in [7], [28], [26], [27] and [36]. The
numerical solutions X (t) and X, (t) of system (2.1) with (4.1) and

0.1sin(t)x, (t) 0.1cos(t)* x, (t —h(t))
f(t,x(0) = | 0.1cos(t)x,(t) |, g(t, x(t—h(t))) =| 0.1sin(t)?x, t—h(t)) |,

0.1cos(t)x, (t—r(t))
W(t, X(t —r(t))) = | 0.1sin(t)%, (t—r(t)) |, h(t) = 25in2(£), r(t) = cos’® (%),
are plotted in Figure 1.

Table 1 Maximum allowable time delay upper bound for h with & =0.1,r, =0,h; =0.5, =0, p =0.1 and
1n=0.1, p = 0.1, respectively, and different values of y.

Methods n=0.p=01 n=01p=0.1

f:. 0 0.1 0.2 0 0.1 0.2
Han and Yu [7] 0.9328 0.7402 0.5637 | 0.8148 0.6439 0.4864
Zhang and Yu [36] 0.9488 (.7695 0.6087 | 0.8408 0.6841 0.5420
Qiu et al. [26] 0.9839 (0.8024 0.6392 | 0.8752 0.7166 0.5727
Rakkiyappan et al. [27] | 1.4886 1.2437 0.9921 | 1.3244 1.0901 0.8475
Rakkiyappan et al. [28] | 1.6325 1.3386 1.0816 | 1.4440 1.1950 0.9734
Our results 3.1790 2.2812 1.4217 | 3.0002 2.2464 1.4001
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The simulation solutions x_(t) and x2(t) are plotted for system (2.1) with (4.1) in Example 4.1.
4 | | | | | | |

\||||||)(1[T.) —

— )(2 (t)

The state variable x(t)

Time (s)
Figure 1: The simulation solutions X, (t) and X, (t) are presented for system (2.1) with (4.1) in Example 4.1 and
initial conditions X, (t) = 2+3sin(t), X,(t) =2+ 2cos(t), t €[-2,0], by using the Runge-Kutta 4th order
method with Matlab.

Example 4.2 Consider the delay-dependent stability criteria of neutral system (3.22) with time-varying delays and
nonlinear perturbations with

—2 05 1 04 02 1
A=| 0 -09|B=|04 -1C=|0 02| =02 ,p=01h(t)=r{)=h 4.3)

Table 2 lists the comparison of the upper bounds delay h for delay-dependent stability criteria of system (3.22)
with (4.3) by different methods in [24] and [31]. It is clear from Table 2 that our results (Corollary 3.2) are superior

to those in [31] and [24]. The numerical solutions X, (t) and X, (t) of system (3.22) with (4.3),
0.2sin(t)x, (t) 0.1cos(t)* x, (t —h(t))
f(t,x(t)) =] 0.2cos(t)x,(t) |, g(t,x(t—h(t))) =] 0.1sin(t)*x,(t—h(t)) |, h=2,

are plotted in Figure 2.

Table 2 Upper bound of time delay h in Example 4.2 for 7 =0.2, p =0.1.

Methods n1=0.2p=0.1
Xiong et al. [31] 0.583

Park [24] 1.7043

Our result 3.3021
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The simulation sclutions x,(t) and xzit] are plotted for system (3.22) with (4.3)
in Example 4.2.

The staks variabbe x(f)

T T T
—31[0

e %) -

2

0

0

10 20 a0 40 50 60
Time (s}

Figure 2: The simulation solutions X, (t) and X, (t) are presented for system (3.22) with (4.3) in Example 4.2 and
initial conditions X, (t) = 2+3sin(t), x,(t) =2+2cos(t), t €[-2,0], by using the Runge-Kutta 4th order

method with Matlab.

5. CONCLUSIONS

lcm The problem of delay-dependent stability criteria of neutral systems with mixed time-varying delays and
nonlinear perturbations has been investigated. Based on the combination of model transformation, decomposition
technique of coefficient matrix, utilization of zero equation and new Lyapunov functional with triple integral terms,
sufficient conditions for asymptotically stability have been obtained and formulated in term of linear matrix
inequalities (LMIs). Numerical examples have shown significant improvements over some existing results.
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