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ABSTRACT 

The objective of this analysis is to study the effect of wall properties on the peristaltic transport of a dusty fluid 

through porous channel with heat and mass transfer. This phenomenon is modulated mathematically by a system of 

partial differential equations which govern the motion of the fluid and solid particles. This system of equations is 

solved analytically in dimensionless form with the appropriate boundary conditions by using perturbation technique 

for small geometric parameter δ. The expressions of velocity, temperature and concentration of fluid and solid 

particles are obtained as functions of the physical parameters of the problem. The effects of the physical parameters 

of the problem on these distributions are discussed and illustrated graphically through a set of figures. 
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1.    INTRODUCTION 

The peristaltic transport through a channel has attracted considerable attention due to their wide applications in 

medical and engineering science. Physiological fluids in animal and human bodies are in general, pumped by the 

continuous contraction and expansion of the ducts. These contraction and expansion are expected to be caused by 

peristaltic waves that propagate along the walls of the ducts. In general, during peristaltic the fluid pumped from 

lower pressure to higher pressure. This mechanism may be involved in urine transport from kidney to bladder 

through the ureter, food mixing and chime movement in the intetire, movement of eggs in the fallopian tube , the 

transport of the spermatozoa in the cervical canal, transport of bile in the bile duct, transport of cilia, and circulation 

of blood in small blood vessels. This mechanism is used also in engineering devices like finger pumps and roller 

pumps. The investigation of the effects of wall properties on peristaltic transport of a dusty fluid was done by 

Srinivasacharya et. al. [1]. In this work the author deals only with the velocity distribution of the fluid and solid 

particles.  Peristaltic MHD flow of a Bingham fluid through a porous medium in a channel has been studied by 

Suryanarayana et. al. [2]. Peristaltic flow of a Newtonian fluid through a porous medium in a vertical tube under the 

effect of magnetic field was studied by Vasudev et. al. [3]. Narahari and S. Sreenadh [4] discussed the peristaltic 

transport of a Bingam fluid in contact with a Newtonian fluid. The effect of porous medium and magnetic field on 

peristaltic transport of a Jeffrey fluid was studied and reported by Mahmoud et. al. [5]. Krishna et. al. [6] Considered 

the peristaltic pumping of a Jeffrey fluid in a porous tube. The peristaltic pumping of a non –Newtonian fluid was 

analyzed by  Medhavi [7]. Non –linear peristaltic pumping of Johnson – Segalman fluid in an asymmetric channel 

under effect of magnetic field was studied by Suryanarayana [8]. Peristaltic pumping of Williamson fluid   through a 

porous medium in a horizontal channel with heat transfer was investigated by Casudeu et. al. [9]. Hayat et. al. [10] 

discussed the heat transfer analysis for peristaltic mechanism in variable viscosity fluid. The effect of heat transfer 

on peristaltic transport of a Newtonian fluid through a porous medium in an asymmetric vertical channel was 

discussed by  Vasudev [11]. Heat and mass transfer of MHD unsteady Maxwell fluid flow through porous medium 

past a porous flat plate was analyzed by El-Dabe et. al. [12]. El-Dabe et. al. [13] discussed the dusty non-Newtonian 

flow between two coaxial circular cylinders. 

         In the present paper, we shall extent the Srinivasacharya et. al. [1] work to include the heat and mass transfer 

for both fluid and solid particles. Analytical solutions of the momentum equation, heat equation and concentration 

equations are obtained by using perturbation technique for both fluid and solid particles. The velocity, temperature, 

concentration and stream functions are obtained for fluid and solid particles. The effects of various parameters on 

these solutions are discussed and illustrated through a set of figures. 
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2.    PROBLEM FORMULATION 

                                                                            𝜆                          𝑦 
                                                                                                          

                                                                                                                                                                                   
                                                                                                      0𝑜                                                      𝑥              
                                                                                                                                                                                            
       a  

 

 

 

Fig. (1). Geometry of peristaltic transport of a dusty fluid in a symmetric porous channel 

 

We consider the peristaltic transport of an incompressible fluid that contains small solid particles, whose number 

density N (assumed to be constant) is large enough to define average properties of the dust particles at a point 

through a symmetric two-dimensional porous channel. Choose the Cartesian coordinates (x,y), where x is along the 

walls and y is perpendicular to it as illustrated in figure (1). 

The channel wall equation is given by: 

                                                   η = d + a sin  
2π

λ
  x − ct                                                                                (1) 

Where d is the half width of the channel, a is the amplitude of the wave, λ is the wavelength, t is the time and c is 

the wave velocity. 

The equations governing the two-dimensional transport of an incompressible dusty fluid through porous channel are: 

 

For fluid particles 

The continuity equation:             ∇ ∙ V = 0                                                                                                            (2) 

The momentum equation:      
∂V

∂t
 +  V ∙ ∇ V = −

1

ρ
∇P + ν∇2V +  

kN

ρ
−

ν

k1
  Vs − V                                          (3) 

The temperature equation:     ρcp  
∂T

∂t
+  V ∙ ∇ T = Q +  Vs − V ∙ F + kc ∇ ∙ ∇T                                             (4) 

The concentration equation:    
∂C

∂t
+  V ∙ ∇ C = D1 ∇2C                                                                                        (5) 

 

For solid particles 

The continuity equation:             ∇ ∙ Vs = 0                                                                                                           (6) 

 The momentum equation:      
∂Vs

∂t
 +  Vs ∙ ∇ Vs =  

k

m
−

ν

k1
  V − Vs                                                                   (7) 

The temperature equation:     Ncm  
∂Ts

∂t
+  Vs ∙ ∇ Ts = −

Ncp

τT
                                                                              (8) 

The concentration equation:    
∂Cs

∂t
+  Vs ∙ ∇ Cs = D2 ∇2Cs                                                                                    (9) 

Where V =  u, v  is the velocity of the fluid , ρ is the density of the fluid, P is the pressure, ν is the kinematic 

viscosity of the fluid, k is the resistance coefficient of the solid particles, k1 is the permeability of porous medium, 

Vs =  us , vs  is the velocity of solid particles, cp  is the specific heat of the fluid, cm  is the specific heat of solid 

particles, T is the temperature of the fluid, Ts  the temperature of solid particles, Q = N cp Ts − T τT    is the thermal 

interaction between fluid and solid particles, τT  is the thermal relaxation time of the solid particles, F =
N Vs − V τν   is the velocity relaxation time of the solid particles, kc  is the thermal conductivity of the fluid, C is the 

concentration of the fluid, Cs  is the concentration of the solid particles, D1 is the coefficient of mass diffusivity of 

the fluid, D2 is the coefficient of mass diffusivity of solid particles,   and m is the mass of the solid particles. 

The equation of motion of the flexible wall is given by  Srinivasacharya et. al. [1]. 

                                                  L η = P − PO                                                                                                           (10) 

Where L is an operator that is used to represnt the motion of the stretched membrane with damping forces such that: 

                                               L = −T1
∂2

∂x2 + M1
∂2

∂t2 + C1
∂

∂t
                                                                                (11) 

Where T1 is the tension in the membrane, M1 is the mass per unit area, C1 is the coefficient of the damping force and 

PO  is the pressure on the outside of the wall due to tension in the muscles, if we assume that PO = 0, then equations 

(2-11) in two dimension form can be written as: 
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∂P

∂x
= μ  

∂2u

∂x2 +
∂2u

∂y2 − ρ  
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
 +  kN −

μ

k1
  us − u                                                                          (12) 

∂P

∂y
= μ  

∂2v

∂x2 +
∂2v

∂y2 − ρ  
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
 +  kN −

μ

k1
  vs − v                                        Fluid particles            (13) 

ρcp  
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
 =

Ncp

τT
 Ts − T +

N

τν
  us − u 2 +  vs − v 2 + kc  

∂2T

∂x2 +
∂2T

∂y2                                        (14) 

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D1  

∂2C

∂x2 +
∂2C

∂y2                                                                                                                         (15) 

∂us

∂t
+ us

∂us

∂x
+ vs

∂us

∂y
=  

k

m
−

ν

k1
  u − us                                                                                                           (16) 

∂vs

∂t
+ us

∂vs

∂x
+ vs

∂vs

∂y
=  

k

m
−

ν

k1
  v − vs                      Dust particles                                                                (17) 

Ncm  
∂Ts

∂t
+ us

∂Ts

∂x
+ vs

∂Ts

∂y
 = −

Ncp

τT
 Ts − T                                                                                                      (18) 

∂Cs

∂t
+ us

∂Cs

∂x
+ vs

∂Cs

∂y
= D2  

∂2Cs

∂x2 +
∂2Cs  

∂y2                                                                                                               (19) 

 

With the appropriate boundary conditions: 

u = us = 0  , T = T1   , Ts = Ts1    , C = C1   and  Cs = Cs1                          at  y =  −η   

u = us = 0  , T = T2   , Ts = Ts2    , C = C2  and  Cs = Cs2                          at  y =  η                                  (20) 
∂P

∂x
=

∂

∂x
L η = μ  

∂2u

∂x2 +
∂2u

∂y2 − ρ  
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
 +  kN −

μ

k1
  us − u   Flexible wall                                 (21) 

 

Introducing the stream functions 𝛙 𝐚𝐧𝐝 𝛗  such that: 

u =
∂ψ

∂y
 ,   v = −

∂ψ

∂x
 ,   us =

∂φ

∂y
  ,    vs = −

∂φ

∂x
                                                                                                     (22)  

 

Using the non-dimensional variables:  

x∗ =
x

λ
  ,  y∗ =

y

d
  ,  η∗ =

η

d
 , t∗ =

tν

λd
 ,  ψ∗ =

ψ

ν
 ,  φ∗ =

φm

kd2  , θ =
T−T1

T2−T1
  , 

 θs =
Ts−Ts1

Ts2−Ts1
,C∗ =

C−C1

C2−C1
,Cs

∗ =
Cs−Cs1

Cs 2−Cs1
.                                                                                                              (23) 

In view of the above non-dimensional variables, equations (12-22) are reduced to the following non-dimensional 

form after dropping the star mark and eliminating the pressure term. 

δ  
∂

∂t
∇1

2ψ +
∂ψ

∂y

∂

∂x
∇1

2ψ −
∂ψ

∂x

∂

∂y
∇1

2ψ = ∇1
4ψ + A1  

1

R
∇1

2φ − ∇1
2ψ                                                                       (24)  

δ  
∂θ

∂t
+

∂ψ

∂y

∂θ

∂x
−

∂ψ

∂x

∂θ

∂y
 =

Nl1

τT
 θs − θ +

Nl1Ec

τν
  

1

R

∂φ

∂y
−

∂ψ

∂y
 

2

+ δ2  
1

R

∂φ

∂x
−

∂ψ

∂x
 

2

 +   
1

Pr
 δ2 ∂2θ

∂x2 +
∂2θ

∂y2               (25) 

δ  
∂C

∂t
+

∂ψ

∂y

∂C

∂x
−

∂ψ

∂x

∂C

∂y
 =

1

Sc1
 δ2 ∂2C

∂x2 +
∂2C

∂y2                                                                                                           (26) 

δ  R
∂

∂t
∇1

2φ +
∂φ

∂y

∂

∂x
∇1

2φ −
∂φ

∂x

∂

∂y
∇1

2φ = A2 R∇1
2ψ − ∇1

2φ                                                                                 (27) 

δ  
∂θs

∂t
+

1

R

∂φ

∂y

∂θs

∂x
−

1

R

∂φ

∂x

∂θs

∂y
 = −l2 θs − θ                                                                                                         (28)  

δ  
∂Cs

∂t
+

1

R

∂φ

∂y

∂Cs

∂x
−

1

R

∂φ

∂x

∂Cs

∂y
 =

1

Sc2
 δ2 ∂2Cs

∂x2 +
∂2Cs

∂y2                                                                                                (29) 

Where ∇1
2=  𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  ,  𝛿 =
𝑑

𝜆
 is geometric parameter, 𝐴1 =

𝑘𝑁𝑑2

𝜌𝜈
−

𝑑2

𝑘1
 , 𝐴2 =  1 −

𝑚𝜈

𝑘𝑘1
  , 𝑅 =

𝑚𝜈

𝑘𝑑2 , 𝑙1 =

𝑑2

𝜇
 and  𝑙2 =

𝑑2𝑐𝑝

𝜈𝑐𝑚 𝜏𝑇
 are non-dimentional parameters,  𝐸𝑐 =

𝜈2

𝑑2𝑐𝑝  𝑇2−𝑇1 
  Eckert number ,    𝑃𝑟 =

𝜇𝑐𝑝

𝑘𝑐
   Prandtl number 

, 𝑆𝑐1 =
𝜈

𝐷1
  is the Schmidt number of the fluid  and 𝑆𝑐2 =

𝜈

𝐷2
  is the Schmidt number of solid particles. 

 

With the boundary conditions: 
𝛛𝛙

𝛛𝐲
= 𝟎,

𝛛𝛗

𝛛𝐲
= 𝟎, 𝛉 = 𝟎, 𝛉𝐬 = 𝟎, 𝐂 = 𝟎, 𝐂𝐬 = 𝟎            𝐚𝐭          𝐲 = −𝛈     

𝛛𝛙

𝛛𝐲
= 𝟎,

𝛛𝛗

𝛛𝐲
= 𝟎  , 𝛉 = 𝟏, 𝛉𝐬 = 𝟏, 𝐂 = 𝟏, 𝐂𝐬 = 𝟏          𝐚𝐭          𝐲 = 𝛈                                                                   (30) 

𝛁𝟏
𝟐 𝛛𝛙

𝛛𝐲
− 𝛅  

𝛛

𝛛𝐭

𝛛𝛙

𝛛𝐲
+

𝛛𝛙

𝛛𝐲

𝛛

𝛛𝐱

𝛛𝛙

𝛛𝐲
−

𝛛𝛙

𝛛𝐱

𝛛

𝛛𝐲

𝛛𝛙

𝛛𝐲
 + 𝐀𝟏  

𝟏

𝐑

𝛛𝛗

𝛛𝐲
−

𝛛𝛙

𝛛𝐲
 =  𝐄𝟏

𝛛𝟑

𝛛𝐱𝟑 + 𝐄𝟐
𝛛𝟑

𝛛𝐱𝛛𝐭𝟐
+ 𝐄𝟑

𝛛𝟐

𝛛𝐱𝛛𝐭
 𝛈                              (31) 

Where 𝐄𝟏 = −
𝐓𝟏𝐝𝟑

𝛒𝛎𝟐𝛌𝟑  is the membrane tension parameter, 𝐄𝟐 =
𝐌𝟏𝐝

𝛒𝛌𝟑  is the mass charactrizing parameter and   𝐄𝟑 =

𝐂𝟏𝐝𝟐

𝛒𝛎𝛌𝟐  is the damping parameter.                                                                                                                                      
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3. METHOD OF SOLUTION 

To have a solution of the system of equations (24-29) subject to the boundary conditions (30) and (31) we assume 

the following perturbation method for small geometric parameter  𝑖. 𝑒  𝛿 ≪ 1  as: 

𝜓 = 𝜓𝑜 + 𝛿𝜓1 + 𝛿2𝜓2 +∙∙∙                                                                                                                                 (32)      

 𝜃 = 𝜃𝑜 + 𝛿𝜃1 + 𝛿2𝜃2 +∙∙∙                                                                                                                                  (33) 

𝐶 = 𝐶𝑜 + 𝛿𝐶1 + 𝛿2𝐶2 +∙∙∙                                                                                                                                   (34) 

𝜑 = 𝜑𝑜 + 𝛿𝜑1 + 𝛿2𝜑2 +∙∙∙                                                                                                                                 (35) 

𝜃𝑠 = 𝜃𝑠𝑜 + 𝛿𝜃𝑠1 + 𝛿2𝜃𝑠2 +∙∙∙                                                                                                                              (36)  

𝐶𝑠 = 𝐶𝑠𝑜 + 𝛿𝐶𝑠1 + 𝛿2𝐶𝑠2 +∙∙∙                                                                                                                              (37)  

Substituting from equations (32-37) in equations (24-29) and collecting the coefficient of various power of  𝛿 on 

both sides, we obtain the flowing sets of equations: 

 

Zero order of  𝛅 
𝜕4𝜓𝑜

𝜕𝑦4 + 𝐴1  
1

𝑅

𝜕2𝜑𝑜

𝜕𝑦2 −
𝜕2𝜓𝑜

𝜕𝑦2  = 0                                                                                                                            (38) 

1

𝑃𝑟

𝜕2𝜃𝑜

𝜕𝑦2 +
𝑁𝑙1

𝜏𝑇
 𝜃𝑠𝑜 − 𝜃𝑜 +

𝑁𝑙1𝐸𝑐

𝜏𝜈
 

1

𝑅

𝜕𝜑𝑜

𝜕𝑦
−

𝜕𝜓𝑜

𝜕𝑦
 

2

= 0                                                                                           (39) 

𝜕2𝐶𝑜

𝜕𝑦2 = 0                                                                                                                                                               (40)     

𝐴2  𝑅
𝜕2𝜓𝑜

𝜕𝑦2 −
𝜕2𝜑𝑜

𝜕𝑦2  = 0                                                                                                                                       (41) 

𝑙2 𝜃𝑠𝑜 − 𝜃𝑜 = 0                                                                                                                          (42) 
𝜕2𝐶𝑠𝑜

𝜕𝑦2 = 0                                                                                                                                                              (43) 

 

With the corresponding boundary conditions: 
𝜕𝜓𝑜

𝜕𝑦
= 0,

𝜕𝜑𝑜

𝜕𝑦
= 0, 𝜃𝑜 = 0, 𝜃𝑠𝑜 = 0, 𝐶𝑜 = 0, 𝐶𝑠𝑜 = 0           𝑎𝑡          𝑦 = −𝜂                                              

𝜕𝜓𝑜

𝜕𝑦
= 0,

𝜕𝜑𝑜

𝜕𝑦
= 0  , 𝜃𝑜 = 1, 𝜃𝑠𝑜 = 1, 𝐶𝑜 = 1, 𝐶𝑠𝑜 = 1           𝑎𝑡         𝑦 = 𝜂                                                         (44) 

𝜕3𝜓𝑜

𝜕𝑦3 + 𝐴1  
1

𝑅

𝜕𝜑𝑜

𝜕𝑦
−

𝜕𝜓𝑜

𝜕𝑦
 =  𝐸1

𝜕3

𝜕𝑥3 + 𝐸2
𝜕3

𝜕𝑥𝜕 𝑡2 + 𝐸3
𝜕2

𝜕𝑥𝜕𝑡
 𝜂       𝑎𝑡         𝑦 = ±𝜂    

 

First order of 𝛅  
𝜕4𝜓1

𝜕𝑦4 + 𝐴1  
1

𝑅

𝜕2𝜑1

𝜕𝑦2 −
𝜕2𝜓1

𝜕𝑦2  =
𝜕3𝜓𝑜

𝜕𝑡𝜕 𝑦2 +
𝜕𝜓𝑜

𝜕𝑦

𝜕3𝜓𝑜

𝜕𝑥𝜕 𝑦2 −
𝜕𝜓𝑜

𝜕𝑥

𝜕3𝜓𝑜

𝜕𝑦3                                                                                 (45) 

1

𝑃𝑟

𝜕2𝜃1

𝜕𝑦2 +
𝑁𝑙1

𝜏𝑇
 𝜃𝑠1 − 𝜃1 =

𝜕𝜃𝑜

𝜕𝑡
+

𝜕𝜓𝑜

𝜕𝑦

𝜕𝜃𝑜

𝜕𝑥
−

𝜕𝜓𝑜

𝜕𝑥

𝜕𝜃𝑜

𝜕𝑦
+

2𝑁𝑙1𝐸𝑐

𝑅𝜏𝜈
 
𝜕𝜑𝑜

𝜕𝑦

𝜕𝜓1

𝜕𝑦
+

𝜕𝜓𝑜

𝜕𝑦

𝜕𝜑1

𝜕𝑦
                                               (46) 

𝜕2𝐶1

𝜕𝑦2 = 𝑆𝑐1  
𝜕𝐶𝑜

𝜕𝑡
+

𝜕𝜓𝑜

𝜕𝑦

𝜕𝐶𝑜

𝜕𝑥
−

𝜕𝜓𝑜

𝜕𝑥

𝜕𝐶𝑜

𝜕𝑦
                                                                                                                     (47) 

 𝐴2  𝑅
𝜕2𝜓1

𝜕𝑦2 −
𝜕2𝜑1

𝜕𝑦2  = 𝑅
𝜕3𝜑𝑜

𝜕𝑡𝜕 𝑦2 +
𝜕𝜑𝑜

𝜕𝑦

𝜕3𝜑𝑜

𝜕𝑥𝜕 𝑦2 −
𝜕𝜑𝑜

𝜕𝑥

𝜕3𝜑𝑜

𝜕𝑦3                                                                                        (48)     

𝑙2 𝜃𝑠1 − 𝜃1 = −
𝜕𝜃𝑠𝑜

𝜕𝑡
−

1

𝑅

𝜕𝜑𝑜

𝜕𝑦

𝜕𝜃𝑠𝑜

𝜕𝑥
+

1

𝑅

𝜕𝜑𝑜

𝜕𝑥

𝜕𝜃𝑠𝑜

𝜕𝑦
                                                                                                  (49) 

𝜕2𝐶𝑠1

𝜕𝑦2 = 𝑆𝑐2  
𝜕𝐶𝑠𝑜

𝜕𝑡
+

1

𝑅

𝜕𝜑𝑜

𝜕𝑦

𝜕𝐶𝑠𝑜

𝜕𝑥
−

1

𝑅

𝜕𝜑𝑜

𝜕𝑥

𝜕𝐶𝑠𝑜

𝜕𝑦
                                                                                                           (50)      

 

With the corresponding boundary conditions: 
𝜕𝜓1

𝜕𝑦
= 0,

𝜕𝜑1

𝜕𝑦
= 0, 𝜃1 = 0, 𝜃𝑠1 = 0, 𝐶1 = 0, 𝐶𝑠1 = 0                        𝑎𝑡            𝑦 = ±𝜂                                         (51) 

Solving equations (38-42) and (44-49) together with the boundary conditions (43) and (50), we get the stream 

functions, velocity, temperature and concentration of fluid and dust particles as: 

𝜓 =
𝐵1

6
 𝑦3 − 3𝜂2𝑦 + 𝛿  −

𝐵1𝐵2𝐵3

2520
𝑦7 +

𝐵2𝐵3

120
𝑦5 +

𝐵4

6
𝑦3 + 𝐵5𝑦                                                                        (52) 

𝑢 =
𝐵1

2
 𝑦2 − 𝜂2 + 𝛿  −

𝐵1𝐵2𝐵3

360
𝑦6 +

𝐵2𝐵3

24
𝑦4 +

𝐵4

2
𝑦2 + 𝐵5                                                                               (53) 

𝜃 =
1

2𝜂
 𝑦 + 𝜂 + 𝛿  

𝐷5𝐷6

90
𝑦10 +

𝐷5𝐷7

56
𝑦8 +

𝐷5𝐷8

30
𝑦6 +

𝐷2𝐷4

20
𝑦5 +

𝐷5𝐷9

12
𝑦4 +

𝐷2𝐷3

6
𝑦3 +

𝐷10

2
𝑦2 + 𝐷11𝑦 + 𝐷12      (54) 

𝐶 =
1

2𝜂
 𝑦 + 𝜂 + 𝛿𝑆𝑐  

𝐹2

20
𝑦5 +

𝐹1

6
𝑦3 −  

𝐹1𝜂2

6
+

𝐹2𝜂4

20
 𝑦                                                                                      (55) 

𝜑 =
𝐵1𝑅

6
 𝑦3 − 3𝜂2𝑦 + 𝛿  

𝐵6

7
𝑦7 +

𝐵7

5
𝑦5 +

𝐵8

3
𝑦3 + 𝐵9𝑦                                                                                    (56) 

𝑢𝑠 =
𝐵1𝑅

2
 𝑦2 − 𝜂2 + 𝛿 𝐵6𝑦

6 + 𝐵7𝑦
4 + 𝐵8𝑦

2 + 𝐵9                                                                                         (57) 
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𝜃𝑠 =
1

2𝜂
 𝑦 + 𝜂 + 𝛿  

𝐷5𝐷6

90
𝑦10 +

𝐷5𝐷7

56
𝑦8 +

𝐷5𝐷8

30
𝑦6 +

𝐷2𝐷4

20
𝑦5 +

𝐷5𝐷9

12
𝑦4 +

𝐷2𝐷3

6
𝑦3 +

𝐷10

2
𝑦2 + 𝐷11𝑦 + 𝐷12 −

1

𝑙2
 𝐷4𝑦

3 + 𝐷3𝑦                                                                                                                                                   (58) 

𝐶𝑠 =
1

2𝜂
 𝑦 + 𝜂 + 𝛿𝑆𝑐2  

𝐹2

20
𝑦5 +

𝐹1

6
𝑦3 −  

𝐹1𝜂2

6
+

𝐹2𝜂4

20
 𝑦                                                                                   (59) 

Where 𝐵1 → 𝐵9 ,  𝐷1 → 𝐷12  ,  𝐹1 and 𝐹2 are defined in the appendix. 

 

4. RESULTS AND DISCUSSION  

This study considered the effect of wall properties on peristaltic transport of a dusty fluid through porous channel 

with heat and mass transfer. The effects of the parameters entering the problem on the velocity, temperature and 

concentration of fluid and dust particles are shown graphically.  

In figures (2-4) the velocity of fluid u are plotted against y. It is observed from these figures that the velocity at fixed 

values of y increases by increasing the tension parameter E1, the mass parameter E2 and the damping parameter E3. 

Also the effects of these parameters E1, E2 and E3 on the velocity of dust particles are shown through figures (5-7). 

Its found that the velocity us  at fixed values of y increases by increasing E1,  E2 and  E3. Figures (8-13) illustrate the 

effects  of E1, E2, E3, N, Ec  and Pr   on the temperature of the fluid. We can see that the temperature at fixed values 

of y decreases by increasing E1, E2 and E3 also the temperature decreases by icreasing  N , Ec  and Pr . Figures (14-

19) represents the effects of the above parameters on the temperature of dust particles when potted against y. It is 

clear that the temperature at fixed values of y decreases by increasing  E1 , E2 and E3. Also, it is observed that the 

temperature decreases by increasing  the number density of dust particles N and Eckert number Ec . The tempereture 

also decrases by increasing the Prandtl number Pr . Figures (20 and 21) are graphed to illustrate the effects of the 

tension parameter and the mass parameter on the concentration of the dusty fluid. It's found that, the concentration at 

fixed values of y decreases with an increase in E1 and E2 , this occurs near the lower porous wall and the invers 

effect will occur near the uper porous wall. Figures (22 and 23) show the variation of the concentration of the fluid 

for different values of the damping parameter and the Schmidt number. It is found that the concentration at fixed 

values of y increases with an increase in E3 and Sc  this occurs near the lower wall and the inverse effect occur near 

the upper wall. Figures (24-27) represent the effects of E1 , E2 , E3 and Sc  on the concentration of dust particles 

when potted against  y. It's found that, the concentration at fixed values of y decreases with an increases in the 

tension parameter E1 and the mass parameter E2 , this occurs near the lower porous wall and the invers effect will 

occur near the upper porous wall, also the concentration increases with an increase in E3 and Sc  this is occurs near 

the lower wall and the inverse effect occur near the upper wall.. Figures (28-33) represents the effects of wall 

parameters (E1, E2 and E3) on the stream functions for fixed values of the other parameters. These figures shows 

that the number of the stream lines decreases with an increases in E1,  E2 and E3 . 

 

6. CONCLUSION 

In the present paper we investigated the effect of wall properties on peristaltic transport of a dusty fluid through 

porous channel with heat and mass transfer. The resulting equations which control the motion of a dusty fluid are 

solved analytically by using the perturbation technique. The stream functions, velocity, temperature and 

concentration of fluid and solid particles are obtained. The phenomenon of trapping and effects of the wall 

parameters (tension parameter E1 , mass paramerter E2and damping parameter E3), the density number of dust 

particles N, Eckert number Ec  , Prandtl number Pr  and Schmidt number  Sc  on these distributions are discussed and 

illustrated by a set of graphs. It is strongly believed that the results of this problem are of great interest for many 

scientific and engineering applications. 

 

Caption of figures 

Figure (2).  The velocity of fluid particles u  is plotted against y,  for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 

Figure (3).  The velocity of fluid particles u  is plotted against y,  for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 

Figure (4).  The velocity of fluid particles u  is plotted against y,  for  R = 1, E1 =0.01, E2 =0.01, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 

Figure (5). The velocity of dust particles us   is plotted against y,  for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 

Figure (6).  The velocity of fluid particles us   is plotted against y,  for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 

Figure (7).  The velocity of fluid particles us   is plotted against y,  for  R = 1, E1 =0.01, E2 =0.01, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1. 
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Figure (8). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 

=0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (9). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 

=0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (10). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E1 =0.01, E2=0.01, A1 =0.2 ,  A2 

=0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (11). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 

=0.2 ,  A2 =0.1, δ=0.01, x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (12). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 

=0.2 ,  A2 =0.1, δ=0.01, x = 1, t = 1, Pr  =0.1, N=10, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (13). The temperature of fluid particles θ  is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 

=0.2 ,  A2 =0.1, δ=0.01, x = 1, t = 1, Ec  =0.2, N=10, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (14). The temperature of dust particles θs   is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 

=0.2 ,  A2 =0.1, δ=0.01, x = 1, t = 1, Pr  =0.1, N=10, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (15). temperature of dust particles θs   is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 =0.2 ,  

A2 =0.1, δ=0.01, x = 1, t = 1, Ec  =0.2, N=10, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (16). temperature of dust particles θs   is plotted against y,  for  R = 1, E1 =0.01,  E2 =0.01, E3=0.5, A1 =0.2 ,  

A2 =0.1, δ=0.01, x = π, t = π, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (17). temperature of dust particles θs is plotted against y,  for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (18). temperature of dust particles θs is plotted against y,  for  R = 1, E1 =0.01, E2=0.01, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (19). temperature of dust particles θs is plotted against y,  for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=1x = 1, t = 10, , Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (20). The concentration of fluid C is plotted against y, for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc1=0.05. 

Figure (21). The concentration of fluid C is plotted against y, for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc1=0.05. 

Figure (22). The concentration of fluid C is plotted against y, for  R = 1, E1 =0.01, E2 =0.01, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc1=0.05. 

Figure (23). The concentration of  fluid C is plotted against y, for  R = 1, E1 =0.01, E2 =0.01, E3=0.5,  A1 =0.2 ,  A2 

=0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (24). The concentration of dusty fluid Cs  is plotted against y, for  R = 1, E2 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc2=0.05. 

Figure (25). The concentration of dusty fluid Cs  is plotted against y, for  R = 1, E1 =0.01, E3=0.5, A1 =0.2 ,  A2 =0.1, 

δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc2=0.05. 

Figure (26). The concentration of dusty fluid Cs  is plotted against y, for  R = 1, E1 =0.01, E2 =0.01, A1 =0.2 ,  A2 

=0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2, Sc2=0.05. 

Figure (27). The concentration of dusty fluid Cs  is plotted against y, for  R = 1, E1 =0.01, E2 =0.01, E3=0.5,  A1 =0.2 

,  A2 =0.1, δ=0.01, N=10,x = 1, t = 1, Pr  =0.1, Ec  =0.2, τT  =1, τν  =1, l1 =0.1, l2=2. 

Figure (28).  The stream function is plotted for  R = 1, E1 =1, E2 =1, E3=0.5, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t =
1. 

Figure (29).  The stream function is plotted for  R = 1, E1 =2, E2 =1, E3=0.5, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t =
0. 

Figure (30).  The stream function is plotted for  R = 1, E1 =1, E2 =2, E3=0.5, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t =
0. 

Figure (31).  The stream function is plotted for  R = 1, E1 =1, E2 =3, E3=0.5, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t =
0. 

Figure (32).  The stream function is plotted for  R = 1, E1 =1, E2 =1, E3=1, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t = 0. 

Figure (33).  The stream function is plotted for  R = 1, E1 =1, E2 =1, E3=2, A1 =0.2 ,  A2 =0.1, δ=0.01, N=10, t = 0. 

 

Appendix 

B1 = −ϵ((E1 + E2)(2π)3Cos[2π(x − t)] − E3(2π)2Sin[2π(x − t)])  

B2 = −ϵ((E1 + E2)(2π)4Sin[2π(x − t)] + E3(2π)3Cos[2π(x − t)])  

B3 = ((A1R/A2) + 1)  

B4 = (B2B1η
4/12)(B3 − 4) − (η2/2)(B2B3)  
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B5 = −B2B3((η4/24) − (B1η
6/360)) − (B4η

2/2)  

B6 = −B1B2B3R/60  

B7 = (B1B2R2/12A2) + (B3B2R/24)  

B8 = −(B2R2/2A2) + (B4R/2)  

B9 = −B6η
6 − B7η

4 − B8η
2  

D1 = πϵCos[2π(x − t)]/η2 , D2 = Pr + nPrL1/τTL2    ,          D3 = D1 + (B1D1η
2/2) − B2η/4  

D4 = (B2/12η) − B1D1/2 ,         D5 = (2L1nECPr/τνR) ,            D6 = (B1B6/2) − (B1
2B2B3R/720)  

D7 = (B1B2B3/48) + (B1B7/2) − (B1B6η
2/2) + (B1

2B2B3Rη2/720)  

D8 = (B1B4R/4) + (B1B8/2) − (B1B2B3Rη2/48) − (B1B7η
2/2)  

D9 = (B1B5R/2) + (B1B9/2) − (B1B4η
2R/4) − (B1B8η

2/2)  

D10 = (B1B5Rη2/2) + (B1B9η
2/2)  

D11 = −(D2D4η
4/20) − (D2D3η

2/6)  

D12 = −(D5D6η
10 /90) − (D5D7η

8/56) − (D5D8η
6/30) − (D5D9η

4/12) − (D10η
2/2)  

F1 = D1 + (B1D1η
2/2) − B2η/4  

F2 = (B2/12η) − (B1D1/2)   
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                              Figure 28                                                              Figure 29   

 
 

 
                                Figure 31                 Figure 30                
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                                  Figure 32                                                                Figure 33 

 
  
REFERENCES 
[1]. D. Srinivasacharya, G. Radhakrishnamacharya, C. Srinivasulu, "The effects of wall properties on peristaltic transport of a 

dusty fluid ", Turkish J. Eng. Env. Sci. 32, (2008), 357-365. 

[2]. M. Suryanarayana, G. Sankar, M. Subba, K. Jayalakshmi, "Peristaltic MHD flow of a Bingham fluid through a porous 

medium in a channel ", African Journal of Scientific Research, 1, (2011), 179-203. 

[3]. C. Vasudev, U. Rajeswara, G. Prabhakara, M. Subba, "Peristaltic flow of a Newtonian fluid through a porous medium in a 

vertical tube under the effect of magnetic field ", Int. J. Cur. Sci. Res., 3, (2011), 105-110. 

[4]. M. Narahari,  S. Sreenadh, " Peristaltic transport of a Bingam fluid in contact with a Newtonian fluid ", Int. J. of Appl. 

Math  and Mach., 11, (2010), 41-54. 

[5]. S. Mahmoud, N. Afifi, H. AL-Isede, " The effect of porous medium and magnetic field on peristaltic transport of a Jeffrey 

fluid ", Int. J. of Math Analysis, 21, (2011), 1025-1034. 

[6]. S. Krishna, M. Ramana, Y. Ravi, S. Sreenadh, " peristaltic pumping of a Jeffrey fluid in a porous tube ", Arpn. J. of 

Engineering and Applied Sciences, 3, (2011), 61-66. 

[7]. A. Medhavi, " The peristaltic pumping of a non –Newtonian fluid ", Int. J. of Applications and Applied Mathematics, 1, 

(2008), 137-148.  

[8]. M. Suryanarayana, G. Sankar, " Non –linear peristaltic pumping of Johnson – Segalman fluid in an asymmetric channel 

under effect of magnetic field ", European  J. of Scientific Research, 1, (2010), 147-164. 

[9]. C. Casudeu, U. Rajeswara, M. Subba, G. Prabhakara, "Peristaltic pumping of Williamson fluid   through a porous 

medium in a horizontal channel with heat transfer ", American J. of scientific and Industrial Research, 3, (2010), 656-666. 

[10]. T. Hayat, F. Abbasi, A. Hendi, "Heat transfer analysis for peristaltic mechanism in variable viscosity fluid ", Chin. Phys. 

Lett., 4, (2011), 1-3.  

[11]. C. Vasudev, U. Rajeswara, M. Subba, G. Prabhakara, "Effect of heat transfer on peristaltic transport of a Newtonian fluid 

through a porous medium in an asymmetric vertical channel ", European  J. of Scientific Research, 1, (2010), 79-92. 

[12]. N. El-Dabe, G. Saddeek, A.  EL-Sayed, " Heat and mass transfer of MHD unsteady Maxwell fluid flow through porous 

medium past a porous flat plate", J. Egypt. Math. Soc.,  13,  (2005), 189-200. 

[13]. N. El-Dabe, S. Elmohandis , A.  Khodier,'' Dusty non-Newtonian flow between two coaxial circular cylinders", Ain-

Shams Science Bulletin, 32,  (1994), (3-17). 


