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ABSTRACT 

In this paper, novel recursive algorithms for realization of one-dimensional discrete sine transform (DST) and 

inverse discrete sine transform (IDST) of any length are proposed.  By using some mathematical techniques, 

recursive expressions for DST and IDST have been developed.  Then, the DST and IDST are implemented by 

recursive filter structures.  A linear systolic architecture for realization of DST is also presented in this paper.  

Compared with some other algorithms, the proposed algorithm for DST achieves savings on the number of 

multiplications and additions.  The recursive algorithms have been found very effective for realization using 

software and VLSI techniques. 

 

Keywords: Discrete sine transform, Inverse discrete sine transform, Recursive algorithm, Systolic architecture. 

 

1.    INTRODUCTION 

The Discrete sine transform (DST) was first introduced to the signal processing by Jain[1], and several versions of 

this original DST were later developed by Kekre et al.[2], Jain[3] and Wang et al.[4].  There exist four even DST’s 

and four odd DST’s, indicating whether they are an even or an odd transform[5].  Ever since the introduction of the 

first version of the DST, the different DST’s have found wide applications in several areas in Digital signal 

processing (DSP), such as image processing[1,6,7], adaptive digital filtering[8] and interpolation[9]. The 

performance of DST can be compared to that of the discrete cosine transform (DCT) and it may therefore be 

considered as a viable alternative to the DCT.  For images with high correlation, the DCT yields better results; 

however, for images with a low correlation of coefficients, the DST yields lower bit rates [10]. Yip and Rao [11] 

have proven that for large sequence length (N ≥ 32) and low correlation coefficient (< 0.6), the DST performs even 

better than the DCT. 

In this paper, two algorithms to convert 1-D DST and IDST of any size into recursive forms are presented. The DST 

and IDST are implemented by recursive filter structures. A systolic architecture for realization of 1-D DST of 

arbitrary length is presented. The proposed approach requires N multiplication and (2N-2) additions for realization 

of N length DST. The number of multiplications and additions in the proposed algorithm for DST are less in 

comparison with some existing structures [12] – [20]. 

The rest of the paper is organized as follows: The derivation of recursive algorithm for 1-D DST is presented in 

Section 2. An example for realization of 1-D DST is given in Section 3. The systolic architecture for computation of 

DST is presented in Section 4. The comparison of proposed realization of DST with other research works is 

presented in Section 5. The recursive algorithm for IDST is given in Section 6. An example for realization IDST is 

presented in Section 7. The conclusion is given in Section 8. Finally, references are given in Section 9. 

 

2.    PROPOSED RECURSIVE ALGORITHM  FOR 1-D DST 

Let   NnnX 1, , be the input data array, then the type-II DST is defined as 
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The Y values represent the transformed date. Without loss of generality, the scale factors may be ignored in the rest 

of the paper.  

 

Taking Nkz / , (1) can be written as 
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The recursive kernel ra  for realization of DST is introduced as given below: 
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From (3), we have 
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Using (5) and (6), (4) can be written as 

  ZaZZaZrXZa rrr sincossin2sin1sin 21        (7) 

Hence, 

             21 cos21   rrr aZarXa                                                      (8) 

for 1......,,2,1,0  Nr  and 0ra  if Nr   
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Using (3), the above expression can be written as  
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The ra  can be generated recursively from the input sequence  nX  according to (8).  Then the kth component of 

1-D DST can be realized by (10). 

 

3.  EXAMPLE  FOR  REALIZING  1-D DST  

Let us use a 5-point DST with input sequence   5,4,3,2,1: nnX  to clarify the proposal. 

As 05 a  and 06 a , we get from (8) 
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Figure 1 shows the block diagram of the recursive filter structure with the input sequence in reverse order for 

realization of 5-point 1-D DST given by (10).  The values of 0a  and 1a  are implemented by (11).  The delay 

elements 
1Z  of the recursive filter must be reset to zero before recursion. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 1. Recursive filter structure for computing 5-point 1-D DST. 

                                                                                                                                      
 

4.   COMPARISON OF THE PROPOSED REALIZATION FOR DST WITH EXISTING SYSTEMS                           

The proposed structure requires N multiplications and  22 N  additions for realization of N length 1-D DST.  In 

Tables 1 and 2, the number of multipliers and the number of adders in the proposed algorithm are compared with the 

corresponding parameters based on the other methods.  Table 3 gives the comparison of the computation 

complexities of the proposed algorithm with other algorithms. 

 
Table 1. Comparison of the number of multipliers required by different algorithms to compute the N-point DST 

 

N [16, 17, 19] [18] [12] [20] Proposed 

4 4 11 2 5 4 

8 12 19 8 13 8 

16 32 36 30 29 16 

32 80 68 54 61 32 

64 192 132 130 125 64 

 

  

 
Table 2. Comparison of the number of adders required by different algorithms to compute the N-point DST 

N [16, 17, 19] [12] [18] [20] Proposed 

4 9 4 11 14 6 

8 29 22 26 26 14 

16 81 62 58 50 30 

32 209 166 122 98 62 

64 513 422 250 194 126 
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Table 3. Comparison of the computation complexities 

Algorithm No. of multiplications No. of additions 

Proposed algorithm N 2N-2 

[13, 14, 17, 19]  (1/2) N log2N (3/2) N log2N - N + 1 

[15] (1/2) N log2N + (1/4) N-1 (3/2) N log2N + (1/2) N-2 

[18] 2(N+3)(N-1) / N 2(2N-1)(N-1) / N 

[20] if N is even 2N-3 3N+2 

[20] if N is odd 2(N-1) 3N+4 

It can be seen that the proposed algorithm for DST requires less number of additions and multiplications in 

comparison with other architectures [12] - [20]. 

 

5.   SYSTOLIC ARCHITECTURE FOR REALIZATION OF DST 

The structure of the proposed linear systolic array for computation of N-point DST is shown in Fig. 2.  It consists of 

(N+1) locally connected processing elements (PEs) of which the first N PEs are identical. The recurrence relation 

given by (8) is implemented in the first N PEs, while the last PE computes the DST components given by (10).  

Function of each of the first N PEs is shown in Fig. 3 and that of the last PE is shown in Fig. 4.  One sample of the 

input data is fed to each PE, one time-step staggered with respect to the input of previous PE, i.e, ith input sample is 

fed to (N+1-i) th PE in (N+1-i) th time-step. The first output for k = 1 is obtained after (N+1) time steps and the rest 

(N-1) outputs for k = 2, 3, …., N are obtained in subsequent time-steps. Successive sets of N-point DSTs are 

obtained in every N+1 time-steps. Each PE of the linear array comprises of one multiplier and two adders, while the 

last PE contains one adder and one multiplier. The duration of the cycle period is T = TM + 2TA, where TM and TA 

are, respectively, the times involved in performing one multiplication and one addition in the PE. This architecture 

requires N multiplications per point and (2N-2) additions per point for realisation of N-point DST.  The hardware - 

and time-complexities of the proposed systolic realisation along with those of the existing structures [21] - [23] are 

listed in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 2. The linear systolic array for N- Point DST 
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Figure 3. Function of each of the first N PEs of the linear array 
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Figure 4. Function of (N+1)th PE of the linear array. 

 
Table 4. Hardware - and time-complexities of proposed structure and the existing systolic structures for the DST  

Structures Multipliers Adders Cycle-Time (T) 

Average 

Computation - 

Time 

Pan and Park [21] N 2N TM + TA NT/2 

Fang and Wu [22] N/2 + 3 N + 3 TM + 2TA NT 

Chiper et al. [23] N-1 N+1 TM + TA (N-1) T/2 

Proposed N  2N - 2 TM + 2TA (N+1) T 

                                                     

 

6.    PROPOSED RECURSIVE ALGORITHM FOR IDST 

The inverse discrete sine transform (IDST) of data   NkkY ,....,,: 21
 
is given by 
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A recursive kernel mb  for IDST is introduced as given below 
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Following the same procedure for deriving (7) from (3), we get 
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For 0m , the recursive kernel in (13) is given by 
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The IDST can be realized using (15) and (18). 

 
7.    EXAMPLE FOR REALIZING  IDST 

Let us use a 5-point IDST with output data sequence   5,4,3,2,1: kkY   to clarify the proposal. As b5=0 

and b6 =0, we have from (15)  
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Figure 5 shows the recursive filter structure for implementation of 5-point IDST using (18) and (19). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Recursive filter structure for computing 5-point IDST. 
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8.    CONCLUSION 

In this paper, two recursive algorithms for realizing DST and IDST of  any length have been derived. Also a linear 

systolic architecture for implementing the recursive algorithm for DST is presented. The number of additions and 

multiplications in the algorithm for DST are less in comparison with some existing structures. Therefore, saving in 

time can be achieved by the proposed algorithm for DST in its realization. The recursive structures require less 

memory and are suitable for parallel VLSI implementation. 
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