
IJRRAS 14 (2) ● February 2013 www.arpapress.com/Volumes/Vol14Issue2/IJRRAS_14_2_12.pdf

340

RECURSIVE ALGORITHMS FOR REALIZATION OF ONE-

DIMENSIONAL DISCRETE SINE TRANSFORM AND INVERSE

DISCRETE SINE TRANSFORM

M.N. Murty

Department of Physics, National Institute of Science & Technology,

Palur Hills, Berhampur-761008, Odisha, India.

Email: mnarayanamurty@rediffmail.com

ABSTRACT

In this paper, novel recursive algorithms for realization of one-dimensional discrete sine transform (DST) and

inverse discrete sine transform (IDST) of any length are proposed. By using some mathematical techniques,

recursive expressions for DST and IDST have been developed. Then, the DST and IDST are implemented by

recursive filter structures. A linear systolic architecture for realization of DST is also presented in this paper.

Compared with some other algorithms, the proposed algorithm for DST achieves savings on the number of

multiplications and additions. The recursive algorithms have been found very effective for realization using

software and VLSI techniques.

Keywords: Discrete sine transform, Inverse discrete sine transform, Recursive algorithm, Systolic architecture.

1. INTRODUCTION

The Discrete sine transform (DST) was first introduced to the signal processing by Jain[1], and several versions of

this original DST were later developed by Kekre et al.[2], Jain[3] and Wang et al.[4]. There exist four even DST’s

and four odd DST’s, indicating whether they are an even or an odd transform[5]. Ever since the introduction of the

first version of the DST, the different DST’s have found wide applications in several areas in Digital signal

processing (DSP), such as image processing[1,6,7], adaptive digital filtering[8] and interpolation[9]. The

performance of DST can be compared to that of the discrete cosine transform (DCT) and it may therefore be

considered as a viable alternative to the DCT. For images with high correlation, the DCT yields better results;

however, for images with a low correlation of coefficients, the DST yields lower bit rates [10]. Yip and Rao [11]

have proven that for large sequence length (N ≥ 32) and low correlation coefficient (< 0.6), the DST performs even

better than the DCT.

In this paper, two algorithms to convert 1-D DST and IDST of any size into recursive forms are presented. The DST

and IDST are implemented by recursive filter structures. A systolic architecture for realization of 1-D DST of

arbitrary length is presented. The proposed approach requires N multiplication and (2N-2) additions for realization

of N length DST. The number of multiplications and additions in the proposed algorithm for DST are less in

comparison with some existing structures [12] – [20].

The rest of the paper is organized as follows: The derivation of recursive algorithm for 1-D DST is presented in

Section 2. An example for realization of 1-D DST is given in Section 3. The systolic architecture for computation of

DST is presented in Section 4. The comparison of proposed realization of DST with other research works is

presented in Section 5. The recursive algorithm for IDST is given in Section 6. An example for realization IDST is

presented in Section 7. The conclusion is given in Section 8. Finally, references are given in Section 9.

2. PROPOSED RECURSIVE ALGORITHM FOR 1-D DST

Let   NnnX 1, , be the input data array, then the type-II DST is defined as











 


N

n

k
N

nk
nXC

N
kY

1 2

)12(
sin)(

2
)(



for k = 1, 2, … , N

 (1)

where












Otherwise1

 if
2

1
Nk

Ck

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

341

The Y values represent the transformed date. Without loss of generality, the scale factors may be ignored in the rest

of the paper.

Taking Nkz / , (1) can be written as

   




















N

n

ZnnXkY
1 2

1
sin (2)

The recursive kernel ra for realization of DST is introduced as given below:

     



N

rn

r ZrnnXZa
1

sinsin (3)

       



N

rn

ZrnnXZrX
2

sinsin1

 

        






N

rn

ZZrnZZrnnX

ZrX

2

sin1coscos1sin

sin1

      

      ZZrnZZrn

ZZrnnXZrX
N

rn

sin1coscos1sin

cos1sin2sin1
2



 


      

    











N

rn

N

rn

ZrnnX

ZZrnnXZrX

2

2

2sin

cos1sin2sin1

 (4)

From (3), we have

    


 
N

rn

r ZrnnXZa
2

1 1sinsin (5)

and

     


 
N

rn

r ZrnnXZa
3

2 2sinsin (6)

Using (5) and (6), (4) can be written as

  ZaZZaZrXZa rrr sincossin2sin1sin 21   (7)

Hence,

   21 cos21   rrr aZarXa (8)

for 1......,,2,1,0  Nr and 0ra if Nr 

Multiplying both sides of (2) by Zsin , we get

    Z
Z

nZnXZkY
N

n

sin
2

sinsin
1














    





















N

n

Z
Z

nZnXZ
Z

X
2

sin
2

sinsin
2

sin1

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

342

 

     
 




































N

n

Z
Z

nZ
Z

nZnX

Z
Z

X

2

sin
2

sincos
2

cossin

sin
2

sin1

     

 

     






































































N

n

N

n

Z
ZnZ

Z
ZnZnX

Z
ZnZ

Z
ZnZnXZ

Z
X

2

2

2
sinsincos

2
sincossin

2
sincossin

2
cossinsinsin

2
sin1

     

    




































N

n

N

n

Z
ZnnX

Z
nZnXZ

Z
X

2

2

2
sin1sin

2
sinsinsin

2
sin1

         





















N

n

N

n

Z
ZnnX

Z
nZnX

21 2
sin1sin

2
sinsin (9)

Using (3), the above expression can be written as

  


















2
sinsin

2
sinsinsin 10

Z
Za

Z
ZaZkY

Hence,

    









2
sin10

Z
aakY

   









N

k
aa

2
sin10


 (10)

The ra can be generated recursively from the input sequence  nX according to (8). Then the kth component of

1-D DST can be realized by (10).

3. EXAMPLE FOR REALIZING 1-D DST

Let us use a 5-point DST with input sequence   5,4,3,2,1: nnX to clarify the proposal.

As 05 a and 06 a , we get from (8)

  210 cos21 aZaXa 

  321 cos22 aZaXa 

   5cos23 32 XZaXa  (11)

    ZXXa cos5243 

 54 Xa 

where
5

k
Z


 for 5N

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

343

Figure 1 shows the block diagram of the recursive filter structure with the input sequence in reverse order for

realization of 5-point 1-D DST given by (10). The values of 0a and 1a are implemented by (11). The delay

elements
1Z of the recursive filter must be reset to zero before recursion.

Figure 1. Recursive filter structure for computing 5-point 1-D DST.

4. COMPARISON OF THE PROPOSED REALIZATION FOR DST WITH EXISTING SYSTEMS

The proposed structure requires N multiplications and  22 N additions for realization of N length 1-D DST. In

Tables 1 and 2, the number of multipliers and the number of adders in the proposed algorithm are compared with the

corresponding parameters based on the other methods. Table 3 gives the comparison of the computation

complexities of the proposed algorithm with other algorithms.

Table 1. Comparison of the number of multipliers required by different algorithms to compute the N-point DST

N [16, 17, 19] [18] [12] [20] Proposed

4 4 11 2 5 4

8 12 19 8 13 8

16 32 36 30 29 16

32 80 68 54 61 32

64 192 132 130 125 64

Table 2. Comparison of the number of adders required by different algorithms to compute the N-point DST

N [16, 17, 19] [12] [18] [20] Proposed

4 9 4 11 14 6

8 29 22 26 26 14

16 81 62 58 50 30

32 209 166 122 98 62

64 513 422 250 194 126





1Z

1Z

1

         5,4,3,2,1 XXXXX

5for
5













N
k

N

k
Z





Input sequence

 Zcos2
 kY

Output










2
sin

Z

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

344

Table 3. Comparison of the computation complexities

Algorithm No. of multiplications No. of additions

Proposed algorithm N 2N-2

[13, 14, 17, 19] (1/2) N log2N (3/2) N log2N - N + 1

[15] (1/2) N log2N + (1/4) N-1 (3/2) N log2N + (1/2) N-2

[18] 2(N+3)(N-1) / N 2(2N-1)(N-1) / N

[20] if N is even 2N-3 3N+2

[20] if N is odd 2(N-1) 3N+4

It can be seen that the proposed algorithm for DST requires less number of additions and multiplications in

comparison with other architectures [12] - [20].

5. SYSTOLIC ARCHITECTURE FOR REALIZATION OF DST

The structure of the proposed linear systolic array for computation of N-point DST is shown in Fig. 2. It consists of

(N+1) locally connected processing elements (PEs) of which the first N PEs are identical. The recurrence relation

given by (8) is implemented in the first N PEs, while the last PE computes the DST components given by (10).

Function of each of the first N PEs is shown in Fig. 3 and that of the last PE is shown in Fig. 4. One sample of the

input data is fed to each PE, one time-step staggered with respect to the input of previous PE, i.e, ith input sample is

fed to (N+1-i) th PE in (N+1-i) th time-step. The first output for k = 1 is obtained after (N+1) time steps and the rest

(N-1) outputs for k = 2, 3, …., N are obtained in subsequent time-steps. Successive sets of N-point DSTs are

obtained in every N+1 time-steps. Each PE of the linear array comprises of one multiplier and two adders, while the

last PE contains one adder and one multiplier. The duration of the cycle period is T = TM + 2TA, where TM and TA

are, respectively, the times involved in performing one multiplication and one addition in the PE. This architecture

requires N multiplications per point and (2N-2) additions per point for realisation of N-point DST. The hardware -

and time-complexities of the proposed systolic realisation along with those of the existing structures [21] - [23] are

listed in Table 4.

 Figure 2. The linear systolic array for N- Point DST

 

delays

N 1

0

0












1
st
 PE

2
nd

 PE

(N-1)

th PE

Nth

PE

(N+1)

th PE

[S]

 
delays

N 2

0

0












0

0

 1Na

 kY

OUTPUT
0a

1a

 2X  1X

 NX
 1NX

0

 Zcos2

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

345

 Zcos2 = 








N

k
cos2

k = 1 for first (N+1) time steps.

Then k  k + 1 in each time-step.

inout

ininininout

inout

qr

rqpXq

pp







inX = Input sample.

Figure 3. Function of each of the first N PEs of the linear array

   10 aaSkY 

S 








N

k

2
sin



k = 1 for first (N+1) time - steps. Then k  k+1 in each time-step.

Figure 4. Function of (N+1)th PE of the linear array.

Table 4. Hardware - and time-complexities of proposed structure and the existing systolic structures for the DST

Structures Multipliers Adders Cycle-Time (T)

Average

Computation -

Time

Pan and Park [21] N 2N TM + TA NT/2

Fang and Wu [22] N/2 + 3 N + 3 TM + 2TA NT

Chiper et al. [23] N-1 N+1 TM + TA (N-1) T/2

Proposed N 2N - 2 TM + 2TA (N+1) T

6. PROPOSED RECURSIVE ALGORITHM FOR IDST

The inverse discrete sine transform (IDST) of data   NkkY ,....,,: 21

is given by











 


N

k N

nk
kYnX

1 2

)12(
sin)()(



for Nn ...,,2,1

 (12)

A recursive kernel mb for IDST is introduced as given below

    



N

mk

m mkkYb
1

sinsin  (13)

PE

inX

outp

outq

outr

inp

inq

inr

[S]  kY0a

1a

IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

346

Following the same procedure for deriving (7) from (3), we get

   sincossin2sin1sin 21   mmm bbmYb (14)

Therefore,

  21 cos21   mmm bbmYb  (15)

for 1......,,2,1,0  Nm and 0mb if Nm  .

Let
 

,
2

12

N

n 



 then (12) can be written as

     



N

k

kkYnX
1

sin  (16)

For 0m , the recursive kernel in (13) is given by

   



N

k

kkYb
1

0 sinsin  (17)

From (16) and (17), we have

   sin0bnX 

 








 


N

n
b

2

12
sin0


 (18)

for Nn,,2,1

The IDST can be realized using (15) and (18).

7. EXAMPLE FOR REALIZING IDST

Let us use a 5-point IDST with output data sequence   5,4,3,2,1: kkY to clarify the proposal. As b5=0

and b6 =0, we have from (15)

  210 cos21 bbYb  

  321 cos22 bbYb  

   5cos23 32 YbYb  
 (19)

    cos5243 YYb 

 54 Yb 

Figure 5 shows the recursive filter structure for implementation of 5-point IDST using (18) and (19).

Figure 5. Recursive filter structure for computing 5-point IDST.





1Z

1Z

1

 nX         5,4,3,2,1 YYYYY
sin

cos2

 

  5
10

12

2
12





Nforn

N
n






IJRRAS 14 (2) ● February 2013 Murty ● Recursive Algorithms

347

8. CONCLUSION

In this paper, two recursive algorithms for realizing DST and IDST of any length have been derived. Also a linear

systolic architecture for implementing the recursive algorithm for DST is presented. The number of additions and

multiplications in the algorithm for DST are less in comparison with some existing structures. Therefore, saving in

time can be achieved by the proposed algorithm for DST in its realization. The recursive structures require less

memory and are suitable for parallel VLSI implementation.

9. REFERENCES
[1] A.K. Jain, “A fast Karhunen-Loeve transform for a class of random processes,” IEEE Trans. Commun., vol.

COM-24, pp 1023-1029, September 1976.

[2] H.B. Kekre and J.K. Solanka, “Comparative performance of various trigonometric unitary transforms for

transform image coding,” Int. J. Electron., vol. 44, pp 305-315, 1978.

[3] A.K. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-I,

pp 356-365, September 1979.

[4] Z. Wang and B. Hunt, “The discrete W transform,” Applied Math Computat., vol. 16, pp 19-48, January 1985.

[5] S. Poornachandra, V. Ravichandran and N.Kumarvel, “Mapping of discrete cosine transform (DCT) and

discrete sine transform (DST) based on symmetries” IETE Journal of Research, Vol. 49, no. 1, pp 35-42,

January-February 2003.

[6] S. Cheng, “Application of the sine transform method in time of flight positron emission image reconstruction

algorithms,” IEEE Trans. BIOMED. Eng., vol. BME-32, pp 185-192, March 1985.

[7] K. Rose, A. Heiman and I. Dinstein, “DCT/DST alternate transform image coding,” Proc. BLOBE COM 87,

vol. I, pp. 426-430, November 1987.

[8] J.L. Wang and Z.Q. Ding, “Discrete sine transform domain LMS adaptive filtering,” Proc. Int. Conf. Acoust.,

Speech, Signal Processing, pp 260-263, 1985.

[9] Z. Wang and L. Wang, “Interpolation using the fast discrete sine transform,” Signal Processing, vol. 26, pp 131-

137, 1992.

[10] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice - Hall, 1989.

[11] P. Yip and K.R. Rao, “On the computation and the effectiveness of discrete sine transform”, Comput. Electron.,

vol. 7, pp. 45-55, 1980.

[12] P. Yip and K.R. Rao, “A fast computational algorithm for the discrete sine transform”, IEEE Trans. Commun.,

vol. COM-28, pp. 304-307, Feb. 1980.

[13] P. Yip and K.R. Rao, “Fast decimation-in-time algorithms for a family of discrete sine and cosine transforms”,

Circuits, Syst., Signal Processing, vol. 3, pp. 387-408, 1984.

[14] O. Ersoy and N.C. Hu, “A unified approach to the fast computation of all discrete trigonometric transforms,” in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 1843-1846, 1987.

[15] P. Yip and K.R. Rao, “The decimation-in-frequency algorithms for a family of discrete sine and cosine

transforms”, Circuits, Syst., Signal Processing, vol. 7, no. 1, pp. 3-19, 1988.

[16] A. Gupta and K.R. Rao, “A fast recursive algorithm for the discrete sine transform” IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. 38, no. 3, pp. 553-557, March, 1990.

[17] Z. Cvetković and M.V. Popović, “New fast recursive algorithms for the computation of discrete cosine and sine

transforms”, IEEE Trans. Signal Processing, vol. 40, no. 8, pp. 2083-2086, Aug. 1992.

[18] J. Caranis, “A VLSI architecture for the real time computation of discrete trigonometric transform”, J. VLSI

Signal Process., no. 5, pp. 95-104, 1993.

[19] Peizong Lee and Fang-Yu Huang, “Restructured recursive DCT and DST algorithms”, IEEE Transactions on

Signal Processing,” vol. 42, no. 7, pp. 1600-1609, July 1994.

[20] V. Kober, “Fast recursive algorithm for sliding discrete sine transform”, Electronics Letters, vol. 38, no. 25, pp.

1747-1748, Dec. 2002.

[21] S.B. Pan and R.H. Park, “Unified systolic array for computation of DCT / DST / DHT”, IEEE Trans. Circuits

Syst. Video Technol., vol. 7, no. 2, pp.413-419, April 1997.

[22] W.H. Fang and M.L. Wu, “Unified fully-pipelined implementations of one- and two-dimensional real discrete

trigonometric trnasforms”, IEICE Trans. Fund. Electron. Commun. Comput. Sci., vol. E82-A, no. 10, pp. 2219-

2230, Oct. 1999.

[23] D.F. Chiper, M.N.S. Swamy, M.O. Ahmad, and T. Stouraitis, “A systolic array architecture for the discrete sine

transform”, IEEE trans. Signal Process., vol. 50, no. 9, pp. 2347 - 2354, Sept. 2002.

